/* ** $Id: lopcodes.h $ ** Opcodes for Lua virtual machine ** See Copyright Notice in lua.h */ #ifndef lopcodes_h #define lopcodes_h #include "llimits.h" /*=========================================================================== We assume that instructions are unsigned 32-bit integers. All instructions have an opcode in the first 7 bits. Instructions can have the following formats: 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 iABC C(8) | B(8) |k| A(8) | Op(7) | iABx Bx(17) | A(8) | Op(7) | iAsB sBx (signed)(17) | A(8) | Op(7) | iAx Ax(25) | Op(7) | isJ sJ(25) | Op(7) | A signed argument is represented in excess K: the represented value is the written unsigned value minus K, where K is half the maximum for the corresponding unsigned argument. ===========================================================================*/ enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */ /* ** size and position of opcode arguments. */ #define SIZE_C 8 #define SIZE_B 8 #define SIZE_Bx (SIZE_C + SIZE_B + 1) #define SIZE_A 8 #define SIZE_Ax (SIZE_Bx + SIZE_A) #define SIZE_sJ (SIZE_Bx + SIZE_A) #define SIZE_OP 7 #define POS_OP 0 #define POS_A (POS_OP + SIZE_OP) #define POS_k (POS_A + SIZE_A) #define POS_B (POS_k + 1) #define POS_C (POS_B + SIZE_B) #define POS_Bx POS_k #define POS_Ax POS_A #define POS_sJ POS_A /* ** limits for opcode arguments. ** we use (signed) int to manipulate most arguments, ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) */ #if SIZE_Bx < LUAI_BITSINT-1 #define MAXARG_Bx ((1<<SIZE_Bx)-1) #else #define MAXARG_Bx MAX_INT #endif #define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */ #if SIZE_Ax < LUAI_BITSINT-1 #define MAXARG_Ax ((1<<SIZE_Ax)-1) #else #define MAXARG_Ax MAX_INT #endif #if SIZE_sJ < LUAI_BITSINT-1 #define MAXARG_sJ ((1 << SIZE_sJ) - 1) #else #define MAXARG_sJ MAX_INT #endif #define OFFSET_sJ (MAXARG_sJ >> 1) #define MAXARG_A ((1<<SIZE_A)-1) #define MAXARG_B ((1<<SIZE_B)-1) #define MAXARG_C ((1<<SIZE_C)-1) #define OFFSET_sC (MAXARG_C >> 1) /* creates a mask with 'n' 1 bits at position 'p' */ #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) /* creates a mask with 'n' 0 bits at position 'p' */ #define MASK0(n,p) (~MASK1(n,p)) /* ** the following macros help to manipulate instructions */ #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) #define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m) #define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0))) #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) #define GETARG_A(i) getarg(i, POS_A, SIZE_A) #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) #define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B)) #define GETARG_sB(i) (GETARG_B(i) - OFFSET_sC) #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) #define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C)) #define GETARG_sC(i) (GETARG_C(i) - OFFSET_sC) #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) #define TESTARG_k(i) (cast_int(((i) & (1u << POS_k)))) #define GETARG_k(i) check_exp(checkopm(i, iABC), getarg(i, POS_k, 1)) #define SETARG_k(i,v) setarg(i, v, POS_k, 1) #define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx)) #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) #define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax)) #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) #define GETARG_sBx(i) \ check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx) #define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx)) #define GETARG_sJ(i) \ check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ) #define SETARG_sJ(i,j) \ setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ) #define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_A) \ | (cast(Instruction, b)<<POS_B) \ | (cast(Instruction, c)<<POS_C) \ | (cast(Instruction, k)<<POS_k)) #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_A) \ | (cast(Instruction, bc)<<POS_Bx)) #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ | (cast(Instruction, a)<<POS_Ax)) #define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \ | (cast(Instruction, j) << POS_sJ) \ | (cast(Instruction, k) << POS_k)) #if !defined(MAXINDEXRK) /* (for debugging only) */ #define MAXINDEXRK MAXARG_B #endif /* ** invalid register that fits in 8 bits */ #define NO_REG MAXARG_A /* ** R(x) - register ** K(x) - constant (in constant table) ** RK(x) == if k(i) then K(x) else R(x) */ /* ** grep "ORDER OP" if you change these enums */ typedef enum { /*---------------------------------------------------------------------- name args description ------------------------------------------------------------------------*/ OP_MOVE,/* A B R(A) := R(B) */ OP_LOADI,/* A sBx R(A) := sBx */ OP_LOADF,/* A sBx R(A) := (lua_Number)sBx */ OP_LOADK,/* A Bx R(A) := K(Bx) */ OP_LOADKX,/* A R(A) := K(extra arg) */ OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */ OP_GETUPVAL,/* A B R(A) := UpValue[B] */ OP_SETUPVAL,/* A B UpValue[B] := R(A) */ OP_GETTABUP,/* A B C R(A) := UpValue[B][K(C):string] */ OP_GETTABLE,/* A B C R(A) := R(B)[R(C)] */ OP_GETI,/* A B C R(A) := R(B)[C] */ OP_GETFIELD,/* A B C R(A) := R(B)[K(C):string] */ OP_SETTABUP,/* A B C UpValue[A][K(B):string] := RK(C) */ OP_SETTABLE,/* A B C R(A)[R(B)] := RK(C) */ OP_SETI,/* A B C R(A)[B] := RK(C) */ OP_SETFIELD,/* A B C R(A)[K(B):string] := RK(C) */ OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C):string] */ OP_ADDI,/* A B sC R(A) := R(B) + C */ OP_SUBI,/* A B sC R(A) := R(B) - C */ OP_MULI,/* A B sC R(A) := R(B) * C */ OP_MODI,/* A B sC R(A) := R(B) % C */ OP_POWI,/* A B sC R(A) := R(B) ^ C */ OP_DIVI,/* A B sC R(A) := R(B) / C */ OP_IDIVI,/* A B sC R(A) := R(B) // C */ OP_ADDK,/* A B C R(A) := R(B) + K(C) */ OP_SUBK,/* A B C R(A) := R(B) - K(C) */ OP_MULK,/* A B C R(A) := R(B) * K(C) */ OP_MODK,/* A B C R(A) := R(B) % K(C) */ OP_POWK,/* A B C R(A) := R(B) ^ K(C) */ OP_DIVK,/* A B C R(A) := R(B) / K(C) */ OP_IDIVK,/* A B C R(A) := R(B) // K(C) */ OP_BANDK,/* A B C R(A) := R(B) & K(C):integer */ OP_BORK,/* A B C R(A) := R(B) | K(C):integer */ OP_BXORK,/* A B C R(A) := R(B) ~ K(C):integer */ OP_SHRI,/* A B sC R(A) := R(B) >> C */ OP_SHLI,/* A B sC R(A) := C << R(B) */ OP_ADD,/* A B C R(A) := R(B) + R(C) */ OP_SUB,/* A B C R(A) := R(B) - R(C) */ OP_MUL,/* A B C R(A) := R(B) * R(C) */ OP_MOD,/* A B C R(A) := R(B) % R(C) */ OP_POW,/* A B C R(A) := R(B) ^ R(C) */ OP_DIV,/* A B C R(A) := R(B) / R(C) */ OP_IDIV,/* A B C R(A) := R(B) // R(C) */ OP_BAND,/* A B C R(A) := R(B) & R(C) */ OP_BOR,/* A B C R(A) := R(B) | R(C) */ OP_BXOR,/* A B C R(A) := R(B) ~ R(C) */ OP_SHL,/* A B C R(A) := R(B) << R(C) */ OP_SHR,/* A B C R(A) := R(B) >> R(C) */ OP_UNM,/* A B R(A) := -R(B) */ OP_BNOT,/* A B R(A) := ~R(B) */ OP_NOT,/* A B R(A) := not R(B) */ OP_LEN,/* A B R(A) := length of R(B) */ OP_CONCAT,/* A B R(A) := R(A).. ... ..R(A + B - 1) */ OP_CLOSE,/* A close all upvalues >= R(A) */ OP_TBC,/* A mark variable A "to be closed" */ OP_JMP,/* k sJ pc += sJ (k is used in code generation) */ OP_EQ,/* A B if ((R(A) == R(B)) ~= k) then pc++ */ OP_LT,/* A B if ((R(A) < R(B)) ~= k) then pc++ */ OP_LE,/* A B if ((R(A) <= R(B)) ~= k) then pc++ */ OP_EQK,/* A B if ((R(A) == K(B)) ~= k) then pc++ */ OP_EQI,/* A sB if ((R(A) == sB) ~= k) then pc++ */ OP_LTI,/* A sB if ((R(A) < sB) ~= k) then pc++ */ OP_LEI,/* A sB if ((R(A) <= sB) ~= k) then pc++ */ OP_GTI,/* A sB if ((R(A) > sB) ~= k) then pc++ */ OP_GEI,/* A sB if ((R(A) >= sB) ~= k) then pc++ */ OP_TEST,/* A if (not R(A) == k) then pc++ */ OP_TESTSET,/* A B if (not R(B) == k) then pc++ else R(A) := R(B) */ OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ OP_RETURN,/* A B C return R(A), ... ,R(A+B-2) (see note) */ OP_RETURN0,/* return */ OP_RETURN1,/* A return R(A) */ OP_FORLOOP1,/* A Bx R(A)++; if R(A) <= R(A+1) then { pc-=Bx; R(A+3)=R(A) } */ OP_FORPREP1,/* A Bx R(A)--; pc+=Bx */ OP_FORLOOP,/* A Bx R(A)+=R(A+2); if R(A) <?= R(A+1) then { pc-=Bx; R(A+3)=R(A) } */ OP_FORPREP,/* A Bx R(A)-=R(A+2); pc+=Bx */ OP_TFORPREP,/* A Bx create upvalue for R(A + 3); pc+=Bx */ OP_TFORCALL,/* A C R(A+4), ... ,R(A+3+C) := R(A)(R(A+1), R(A+2)); */ OP_TFORLOOP,/* A Bx if R(A+2) ~= nil then { R(A)=R(A+2); pc -= Bx } */ OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */ OP_VARARG,/* A C R(A), R(A+1), ..., R(A+C-2) = vararg */ OP_PREPVARARG,/*A (adjust vararg parameters) */ OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ } OpCode; #define NUM_OPCODES ((int)(OP_EXTRAARG) + 1) /*=========================================================================== Notes: (*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then 'top' is set to last_result+1, so next open instruction (OP_CALL, OP_RETURN*, OP_SETLIST) may use 'top'. (*) In OP_VARARG, if (C == 0) then use actual number of varargs and set top (like in OP_CALL with C == 0). (*) In OP_RETURN, if (B == 0) then return up to 'top'. (*) In OP_SETLIST, if (B == 0) then real B = 'top'; if (C == 0) then next 'instruction' is EXTRAARG(real C). (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG. (*) For comparisons, k specifies what condition the test should accept (true or false). (*) All 'skips' (pc++) assume that next instruction is a jump. (*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the function either builds upvalues, which may need to be closed, or is vararg, which must be corrected before returning. When 'k' is true, C > 0 means the function is vararg and (C - 1) is its number of fixed parameters. ===========================================================================*/ /* ** masks for instruction properties. The format is: ** bits 0-2: op mode ** bit 3: instruction set register A ** bit 4: operator is a test (next instruction must be a jump) ** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0) ** bit 6: instruction sets 'L->top' for next instruction (when C == 0) */ LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];) #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7)) #define testAMode(m) (luaP_opmodes[m] & (1 << 3)) #define testTMode(m) (luaP_opmodes[m] & (1 << 4)) #define testITMode(m) (luaP_opmodes[m] & (1 << 5)) #define testOTMode(m) (luaP_opmodes[m] & (1 << 6)) /* "out top" (set top for next instruction) */ #define isOT(i) \ ((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \ GET_OPCODE(i) == OP_TAILCALL) /* "in top" (uses top from previous instruction) */ #define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0) #define opmode(ot,it,t,a,m) (((ot)<<6) | ((it)<<5) | ((t)<<4) | ((a)<<3) | (m)) /* number of list items to accumulate before a SETLIST instruction */ #define LFIELDS_PER_FLUSH 50 #endif