refactor (WORKING) using embassy

This commit is contained in:
Naxdy 2024-03-12 00:08:34 +01:00
parent 44de7e2330
commit 76355b72ce
No known key found for this signature in database
GPG key ID: C0437AAE9755550F
8 changed files with 1537 additions and 607 deletions

1433
Cargo.lock generated

File diff suppressed because it is too large Load diff

View file

@ -6,20 +6,40 @@ edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
rp2040-hal = { version = "0.9.2", features = ["rt", "critical-section-impl"] }
rp2040-flash = "0.4.0"
usbd-human-interface-device = { version = "0.4.5", features = ["defmt"] }
usb-device = "0.2"
cortex-m = "0.7.7"
cortex-m-rt = "0.7.3"
embedded-hal = { version = "0.2.7", features = ["unproven"] }
panic-probe = "0.3.1"
defmt = "0.3.6"
defmt-rtt = "0.4.0"
rp2040-boot2 = "0.3.0"
fugit = "0.3.7"
embassy-time = { version = "0.3.0", features = [
"defmt",
"defmt-timestamp-uptime",
] }
embassy-embedded-hal = { version = "0.1.0", features = ["defmt"] }
embassy-sync = { version = "0.5.0", features = ["defmt"] }
embassy-executor = { version = "0.5.0", features = [
"task-arena-size-32768",
"arch-cortex-m",
"executor-thread",
"executor-interrupt",
"defmt",
"integrated-timers",
] }
embassy-rp = { version = "0.1.0", features = [
"defmt",
"unstable-pac",
"time-driver",
"critical-section-impl",
] }
embassy-usb = { version = "0.1.0", features = ["defmt"] }
embassy-futures = { version = "0.1.0" }
defmt = "0.3"
defmt-rtt = "0.4"
fixed = "1.23.1"
fixed-macro = "1.2"
static_cell = "2"
portable-atomic = { version = "1.5", features = ["critical-section"] }
#cortex-m = { version = "0.7.6", features = ["critical-section-single-core"] }
cortex-m = { version = "0.7.6", features = ["inline-asm"] }
cortex-m-rt = "0.7.0"
panic-probe = { version = "0.3", features = ["print-defmt"] }
packed_struct = { version = "0.10.1", default_features = false }
panic-halt = "0.2.0"
format_no_std = "1.0.2"
# cargo build/run

View file

@ -1,3 +1,13 @@
//! This build script copies the `memory.x` file from the crate root into
//! a directory where the linker can always find it at build time.
//! For many projects this is optional, as the linker always searches the
//! project root directory -- wherever `Cargo.toml` is. However, if you
//! are using a workspace or have a more complicated build setup, this
//! build script becomes required. Additionally, by requesting that
//! Cargo re-run the build script whenever `memory.x` is changed,
//! updating `memory.x` ensures a rebuild of the application with the
//! new memory settings.
use std::env;
use std::fs::File;
use std::io::Write;
@ -18,4 +28,9 @@ fn main() {
// here, we ensure the build script is only re-run when
// `memory.x` is changed.
println!("cargo:rerun-if-changed=memory.x");
println!("cargo:rustc-link-arg-bins=--nmagic");
println!("cargo:rustc-link-arg-bins=-Tlink.x");
println!("cargo:rustc-link-arg-bins=-Tlink-rp.x");
println!("cargo:rustc-link-arg-bins=-Tdefmt.x");
}

View file

@ -46,14 +46,14 @@
CARGO_BUILD_TARGET = "thumbv6m-none-eabi";
RUSTFLAGS = [
"-Clinker=flip-link"
"-Clink-arg=--nmagic"
"-Clink-arg=-Tlink.x"
"-Clink-arg=-Tdefmt.x"
"-Cinline-threshold=5"
"-Cno-vectorize-loops"
];
# RUSTFLAGS = [
# "-Clinker=flip-link"
# "-Clink-arg=--nmagic"
# "-Clink-arg=-Tlink.x"
# "-Clink-arg=-Tdefmt.x"
# "-Cinline-threshold=5"
# "-Cno-vectorize-loops"
# ];
in
{
packages.default = self.packages.${system}.naxgcc-fw-uf2;
@ -77,7 +77,7 @@
"--target=${CARGO_BUILD_TARGET}"
];
inherit RUSTFLAGS;
# inherit RUSTFLAGS;
};
devShells.default = pkgs.mkShell {
@ -87,9 +87,9 @@
};
CARGO_TARGET_THUMBV6M_NONE_EABI_RUNNER = "probe-rs run --chip RP2040 --protocol swd";
DEFMT_LOG = "trace";
DEFMT_LOG = "debug";
inherit RUSTFLAGS CARGO_BUILD_TARGET;
inherit CARGO_BUILD_TARGET;
};
}));
}

View file

@ -1,15 +1,17 @@
MEMORY {
BOOT2 : ORIGIN = 0x10000000, LENGTH = 0x100
FLASH : ORIGIN = 0x10000100, LENGTH = 2048K - 0x100
RAM : ORIGIN = 0x20000000, LENGTH = 256K
/* Pick one of the two options for RAM layout */
/* OPTION A: Use all RAM banks as one big block */
/* Reasonable, unless you are doing something */
/* really particular with DMA or other concurrent */
/* access that would benefit from striping */
RAM : ORIGIN = 0x20000000, LENGTH = 264K
/* OPTION B: Keep the unstriped sections separate */
/* RAM: ORIGIN = 0x20000000, LENGTH = 256K */
/* SCRATCH_A: ORIGIN = 0x20040000, LENGTH = 4K */
/* SCRATCH_B: ORIGIN = 0x20041000, LENGTH = 4K */
}
EXTERN(BOOT2_FIRMWARE)
SECTIONS {
/* ### Boot loader */
.boot2 ORIGIN(BOOT2) :
{
KEEP(*(.boot2));
} > BOOT2
} INSERT BEFORE .text;

View file

@ -1,27 +1,23 @@
use core::default::Default;
use defmt::{error, info, unwrap, Debug2Format, Format};
use embedded_hal::timer::CountDown as _;
use fugit::ExtU32;
use defmt::{debug, error, info, trace, unwrap, warn, Debug2Format, Format};
use embassy_futures::{
join::join,
select::{self, select, Either},
};
use embassy_rp::{peripherals::USB, usb::Driver};
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::signal::Signal;
use embassy_time::Duration;
use embassy_usb::{
class::hid::{HidReaderWriter, ReportId, RequestHandler, State},
control::OutResponse,
Builder, Handler,
};
use packed_struct::{derive::PackedStruct, PackedStruct};
use rp2040_flash::flash::flash_unique_id;
use rp2040_hal::timer::CountDown;
use usb_device::{
bus::{UsbBus, UsbBusAllocator},
device::{UsbDeviceBuilder, UsbVidPid},
};
use usbd_human_interface_device::{
descriptor::InterfaceProtocol,
device::DeviceClass,
interface::{
InBytes64, Interface, InterfaceBuilder, InterfaceConfig, OutBytes64, ReportSingle,
UsbAllocatable,
},
usb_class::UsbHidClassBuilder,
UsbHidError,
};
use portable_atomic::Ordering;
use crate::{input::GCC_STATE, CORE_LOCK, LOCKED};
use crate::input::GCC_STATE;
#[rustfmt::skip]
pub const GCC_REPORT_DESCRIPTOR: &[u8] = &[
@ -148,76 +144,27 @@ impl Default for RawConsoleReport {
Self { packet: [0u8; 64] }
}
}
pub struct GcConfig<'a> {
interface: InterfaceConfig<'a, InBytes64, OutBytes64, ReportSingle>,
}
impl<'a> GcConfig<'a> {
#[must_use]
pub fn new(interface: InterfaceConfig<'a, InBytes64, OutBytes64, ReportSingle>) -> Self {
Self { interface }
}
}
struct GccRequestHandler {}
impl<'a> Default for GcConfig<'a> {
#[must_use]
fn default() -> Self {
let i = unwrap!(
unwrap!(unwrap!(InterfaceBuilder::new(GCC_REPORT_DESCRIPTOR))
.boot_device(InterfaceProtocol::None)
.description("NaxGCC")
.in_endpoint(1.millis()))
.with_out_endpoint(1.millis())
);
Self::new(i.build())
}
}
impl<'a, B: UsbBus + 'a> UsbAllocatable<'a, B> for GcConfig<'a> {
type Allocated = GcController<'a, B>;
fn allocate(self, usb_alloc: &'a UsbBusAllocator<B>) -> Self::Allocated {
Self::Allocated {
interface: Interface::new(usb_alloc, self.interface),
}
}
}
pub struct GcController<'a, B: UsbBus> {
interface: Interface<'a, B, InBytes64, OutBytes64, ReportSingle>,
}
impl<'a, B: UsbBus> GcController<'a, B> {
pub fn write_report(&mut self, report: &GcReport) -> Result<(), UsbHidError> {
let report = get_gcinput_hid_report(report);
self.interface
.write_report(&report)
.map(|_| ())
.map_err(|e| UsbHidError::from(e))
impl RequestHandler for GccRequestHandler {
fn get_report(&self, id: ReportId, _buf: &mut [u8]) -> Option<usize> {
info!("Get report for {:?}", id);
None
}
pub fn read_report(&mut self) -> Result<RawConsoleReport, UsbHidError> {
let mut report = RawConsoleReport::default();
match self.interface.read_report(&mut report.packet) {
Err(e) => Err(UsbHidError::from(e)),
Ok(_) => Ok(report),
}
}
}
impl<'a, B: UsbBus> DeviceClass<'a> for GcController<'a, B> {
type I = Interface<'a, B, InBytes64, OutBytes64, ReportSingle>;
fn interface(&mut self) -> &mut Self::I {
&mut self.interface
fn set_report(&self, id: ReportId, data: &[u8]) -> OutResponse {
info!("Set report for {:?}: {=[u8]}", id, data);
OutResponse::Accepted
}
fn reset(&mut self) {}
fn set_idle_ms(&self, id: Option<ReportId>, dur: u32) {
info!("Set idle rate for {:?} to {:?}", id, dur);
}
fn tick(&mut self) -> Result<(), UsbHidError> {
Ok(())
fn get_idle_ms(&self, id: Option<ReportId>) -> Option<u32> {
info!("Get idle rate for {:?}", id);
None
}
}
@ -245,80 +192,142 @@ fn get_gcinput_hid_report(input_state: &GcReport) -> [u8; 37] {
buffer
}
pub fn usb_transfer_loop<'a, T: UsbBus>(
usb_bus: UsbBusAllocator<T>,
mut poll_timer: CountDown<'a>,
) -> ! {
// let mut serial_buffer = [0u8; 64];
struct MyDeviceHandler {
configured: bool,
}
// let serial = unsafe {
// let mut id = [0u8; 8];
// flash_unique_id(&mut id, true);
// let s = format_no_std::show(
// &mut serial_buffer,
// format_args!(
// "{:02X}{:02X}{:02X}{:02X}{:02X}{:02X}{:02X}{:02X}",
// id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7]
// ),
// )
// .unwrap();
// info!("Detected flash with unique serial number {}", s);
// s
// };
let mut gcc = UsbHidClassBuilder::new()
.add_device(GcConfig::default())
.build(&usb_bus);
let mut usb_dev = UsbDeviceBuilder::new(&usb_bus, UsbVidPid(0x057e, 0x0337))
.manufacturer("Naxdy")
.product("NaxGCC")
.serial_number("flarn")
.device_class(0)
.device_protocol(0)
.device_sub_class(0)
.self_powered(false)
.max_power(500)
.max_packet_size_0(64)
.build();
poll_timer.start(1.millis());
info!("Got here");
loop {
if unsafe { LOCKED } {
continue;
impl MyDeviceHandler {
fn new() -> Self {
MyDeviceHandler { configured: false }
}
}
if poll_timer.wait().is_ok() {
match gcc.device().write_report(&(unsafe { GCC_STATE })) {
Err(UsbHidError::WouldBlock) => {}
Ok(_) => {}
Err(e) => {
error!("Error: {:?}", Debug2Format(&e));
panic!();
impl Handler for MyDeviceHandler {
fn enabled(&mut self, enabled: bool) {
self.configured = true;
if enabled {
info!("Device enabled");
} else {
info!("Device disabled");
}
}
fn reset(&mut self) {
self.configured = false;
info!("Bus reset, the Vbus current limit is 100mA");
}
if usb_dev.poll(&mut [&mut gcc]) {
match gcc.device().read_report() {
Err(UsbHidError::WouldBlock) => {}
Err(e) => {
error!("Failed to read report: {:?}", Debug2Format(&e));
}
Ok(report) => {
info!("Received report: {:08x}", report.packet);
// rumble packet
if report.packet[0] == 0x11 {
info!("Received rumble info: Controller1 ({:08x}) Controller2 ({:08x}) Controller3 ({:08x}) Controller4 ({:08x})", report.packet[1], report.packet[2], report.packet[3], report.packet[4]);
}
}
fn addressed(&mut self, addr: u8) {
self.configured = false;
info!("USB address set to: {}", addr);
}
fn configured(&mut self, configured: bool) {
self.configured = configured;
if configured {
info!(
"Device configured, it may now draw up to the configured current limit from Vbus."
)
} else {
info!("Device is no longer configured, the Vbus current limit is 100mA.");
}
}
}
#[embassy_executor::task]
pub async fn usb_transfer_loop(driver: Driver<'static, USB>) {
debug!("Start of config");
let mut usb_config = embassy_usb::Config::new(0x057e, 0x0337);
usb_config.manufacturer = Some("Naxdy");
usb_config.product = Some("NaxGCC");
usb_config.serial_number = Some("Fleeb");
usb_config.max_power = 100;
usb_config.max_packet_size_0 = 64;
usb_config.device_class = 0;
usb_config.device_protocol = 0;
usb_config.self_powered = false;
usb_config.device_sub_class = 0;
usb_config.supports_remote_wakeup = false;
let mut device_descriptor = [0; 256];
let mut config_descriptor = [0; 256];
let mut bos_descriptor = [0; 256];
let mut msos_descriptor = [0; 256];
let mut control_buf = [0; 64];
let request_handler = GccRequestHandler {};
let mut device_handler = MyDeviceHandler::new();
let mut state = State::new();
let mut builder = Builder::new(
driver,
usb_config,
&mut device_descriptor,
&mut config_descriptor,
&mut bos_descriptor,
&mut msos_descriptor,
&mut control_buf,
);
builder.handler(&mut device_handler);
let hid_config = embassy_usb::class::hid::Config {
report_descriptor: GCC_REPORT_DESCRIPTOR,
request_handler: Some(&request_handler),
poll_ms: 1,
max_packet_size: 64,
};
let hid = HidReaderWriter::<_, 5, 37>::new(&mut builder, &mut state, hid_config);
let mut usb = builder.build();
let usb_fut = async {
loop {
usb.run_until_suspend().await;
debug!("Suspended");
usb.wait_resume().await;
debug!("RESUMED!");
}
};
let (mut reader, mut writer) = hid.split();
debug!("In here");
let mut timer = embassy_time::Ticker::every(Duration::from_millis(1));
let in_fut = async {
loop {
let state = unsafe { GCC_STATE.clone() };
let report = get_gcinput_hid_report(&state);
match writer.write(&report).await {
Ok(()) => {
trace!("Report Written: {:08b}", report);
}
Err(e) => warn!("Failed to send report: {:?}", e),
}
}
};
let out_fut = async {
loop {
debug!("Readery loop");
let mut buf = [0u8; 5];
match reader.read(&mut buf).await {
Ok(e) => {
debug!("READ SOMETHIN: {:08b}", buf)
}
Err(e) => {
warn!("Failed to read: {:?}", e);
}
}
}
};
let usb_fut_wrapped = async {
usb_fut.await;
debug!("USB FUT DED");
};
join(usb_fut_wrapped, join(in_fut, out_fut)).await;
}

View file

@ -1,5 +1,5 @@
use defmt::info;
use embedded_hal::digital::v2::InputPin;
use defmt::{debug, info};
use embassy_rp::{gpio::Input, peripherals::PIN_15, Peripherals};
use crate::gcc_hid::{Buttons1, Buttons2, GcReport};
@ -29,87 +29,11 @@ pub static mut GCC_STATE: GcReport = GcReport {
trigger_r: 0,
};
macro_rules! pin_inputs {
($x:tt {$($f:tt: $g:tt),*}) => {
pub struct $x<$($g,)*>
where
$(
$g: InputPin,
)*
{
$(
pub $f: $g,
)*
}
};
}
macro_rules! assign_pins {
($gcc:expr, $inputs:tt, {$($p:tt.$c:tt),*}) => {
$(
$gcc.$p.$c = $inputs.$c.is_low().map_err(|_| "").unwrap();
)*
};
}
pin_inputs!(BasicInputs {
button_a: A,
button_b: B,
button_x: X,
button_y: Y,
dpad_left: Dl,
dpad_right: Dr,
dpad_down: Dd,
dpad_up: Du,
button_start: S,
button_z: Z,
button_r: R,
button_l: L
});
pub fn input_loop<
A: InputPin,
B: InputPin,
X: InputPin,
Y: InputPin,
Dl: InputPin,
Dr: InputPin,
Dd: InputPin,
Du: InputPin,
S: InputPin,
Z: InputPin,
R: InputPin,
L: InputPin,
>(
basic_inputs: BasicInputs<A, B, X, Y, Dl, Dr, Dd, Du, S, Z, R, L>,
) -> ! {
info!("Input loop started.");
let update_gcc_state = || unsafe {
// simple booleans
assign_pins!(GCC_STATE, basic_inputs, {
buttons_1.button_a,
buttons_1.button_b,
buttons_1.button_x,
buttons_1.button_y,
buttons_1.dpad_left,
buttons_1.dpad_right,
buttons_1.dpad_down,
buttons_1.dpad_up,
buttons_2.button_start,
buttons_2.button_z,
buttons_2.button_r,
buttons_2.button_l
});
// TODO: sticks
GCC_STATE.cstick_x = 127;
GCC_STATE.cstick_y = 127;
GCC_STATE.stick_x = 127;
GCC_STATE.stick_y = 127;
};
#[embassy_executor::task]
pub async fn input_loop(btn_z: Input<'static, PIN_15>) -> ! {
loop {
update_gcc_state();
unsafe {
GCC_STATE.buttons_2.button_z = btn_z.is_low();
}
}
}

View file

@ -1,186 +1,53 @@
//! # GPIO 'Blinky' Example
//! This example test the RP Pico on board LED.
//!
//! This application demonstrates how to control a GPIO pin on the RP2040.
//!
//! It may need to be adapted to your particular board layout and/or pin assignment.
//!
//! See the `Cargo.toml` file for Copyright and license details.
//! It does not work with the RP Pico W board. See wifi_blinky.rs.
#![no_std]
#![no_main]
mod flash_mem;
mod gcc_hid;
mod input;
use cortex_m::interrupt::Mutex;
use defmt::{error, info};
use fugit::{ExtU32, RateExtU32};
// Ensure we halt the program on panic (if we don't mention this crate it won't
// be linked)
use defmt_rtt as _;
use panic_probe as _;
use rp2040_flash::flash::flash_unique_id;
// Alias for our HAL crate
use rp2040_hal as hal;
// A shorter alias for the Peripheral Access Crate, which provides low-level
// register access
use hal::{
gpio::FunctionSpi,
multicore::{self, Multicore, Stack},
pac, Spi,
};
// Some traits we need
use embedded_hal::{
blocking::{delay::DelayMs, spi::Transfer},
digital::v2::OutputPin,
spi::MODE_0,
timer::CountDown,
};
use usb_device::bus::UsbBusAllocator;
use crate::{
flash_mem::{read_from_flash, write_to_flash},
gcc_hid::usb_transfer_loop,
input::{input_loop, BasicInputs},
use defmt::info;
use embassy_executor::{Executor, Spawner};
use embassy_rp::{
bind_interrupts,
gpio::{self, Input},
multicore::{spawn_core1, Stack},
peripherals::USB,
usb::{Driver, InterruptHandler},
};
use embassy_time::Timer;
use gcc_hid::usb_transfer_loop;
use gpio::{Level, Output};
use input::input_loop;
use static_cell::StaticCell;
use {defmt_rtt as _, panic_probe as _};
static mut CORE1_STACK: Stack<4096> = Stack::new();
static EXECUTOR0: StaticCell<Executor> = StaticCell::new();
static EXECUTOR1: StaticCell<Executor> = StaticCell::new();
pub static mut LOCKED: bool = false;
bind_interrupts!(struct Irqs {
USBCTRL_IRQ => InterruptHandler<USB>;
});
pub static CORE_LOCK: Mutex<()> = Mutex::new(());
/// The linker will place this boot block at the start of our program image. We
/// need this to help the ROM bootloader get our code up and running.
/// Note: This boot block is not necessary when using a rp-hal based BSP
/// as the BSPs already perform this step.
#[link_section = ".boot2"]
#[used]
pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H;
/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust
/// if your board has a different frequency
const XTAL_FREQ_HZ: u32 = 12_000_000u32;
/// Entry point to our bare-metal application.
///
/// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function
/// as soon as all global variables and the spinlock are initialised.
///
/// The function configures the RP2040 peripherals, then toggles a GPIO pin in
/// an infinite loop. If there is an LED connected to that pin, it will blink.
#[rp2040_hal::entry]
#[cortex_m_rt::entry]
fn main() -> ! {
// Grab our singleton objects
let mut pac = pac::Peripherals::take().unwrap();
let p = embassy_rp::init(Default::default());
// Set up the watchdog driver - needed by the clock setup code
let mut watchdog = hal::Watchdog::new(pac.WATCHDOG);
let driver = Driver::new(p.USB, Irqs);
// Configure the clocks
let clocks = hal::clocks::init_clocks_and_plls(
XTAL_FREQ_HZ,
pac.XOSC,
pac.CLOCKS,
pac.PLL_SYS,
pac.PLL_USB,
&mut pac.RESETS,
&mut watchdog,
)
.ok()
.unwrap();
info!("Initializing");
let mut timer = rp2040_hal::Timer::new(pac.TIMER, &mut pac.RESETS, &clocks);
spawn_core1(p.CORE1, unsafe { &mut CORE1_STACK }, move || {
let executor1 = EXECUTOR1.init(Executor::new());
executor1.run(|spawner| spawner.spawn(usb_transfer_loop(driver)).unwrap());
});
// The single-cycle I/O block controls our GPIO pins
let mut sio = hal::Sio::new(pac.SIO);
// Set the pins to their default state
let pins = hal::gpio::Pins::new(
pac.IO_BANK0,
pac.PADS_BANK0,
sio.gpio_bank0,
&mut pac.RESETS,
);
// usb parts
let usb_bus = UsbBusAllocator::new(hal::usb::UsbBus::new(
pac.USBCTRL_REGS,
pac.USBCTRL_DPRAM,
clocks.usb_clock,
true,
&mut pac.RESETS,
));
let mut mc = Multicore::new(&mut pac.PSM, &mut pac.PPB, &mut sio.fifo);
let cores = mc.cores();
let core1 = &mut cores[1];
let _transfer_loop = core1
.spawn(unsafe { &mut CORE1_STACK.mem }, move || {
let mut poll_timer = timer.count_down();
poll_timer.start(1.millis());
usb_transfer_loop(usb_bus, poll_timer)
})
.unwrap();
info!("Initialized");
let mut ccs = pins.gpio23.into_push_pull_output();
let mut acs = pins.gpio24.into_push_pull_output();
ccs.set_high().unwrap();
acs.set_high().unwrap();
let spi_device = pac.SPI0;
let clk = pins.gpio6.into_function::<FunctionSpi>();
let tx = pins.gpio7.into_function::<FunctionSpi>();
let rx = pins.gpio4.into_function::<FunctionSpi>();
let spi_pin_layout = (tx, rx, clk);
let mut spi = Spi::<_, _, _, 8>::new(spi_device, spi_pin_layout).init(
&mut pac.RESETS,
3_000_000u32.Hz(),
3_000_000u32.Hz(),
MODE_0,
);
let mut w = [0b11010000u8; 3];
info!("W is {}", w);
let r = spi.transfer(&mut w);
match r {
Ok(t) => {
info!("T is {}", t)
}
Err(e) => {
error!("SPI transfer failed: {}", e);
}
}
input_loop(BasicInputs {
button_a: pins.gpio17.into_pull_up_input(),
button_b: pins.gpio16.into_pull_up_input(),
button_x: pins.gpio18.into_pull_up_input(),
button_y: pins.gpio19.into_pull_up_input(),
button_z: pins.gpio20.into_pull_up_input(),
button_r: pins.gpio21.into_pull_up_input(),
button_l: pins.gpio22.into_pull_up_input(),
dpad_left: pins.gpio8.into_pull_up_input(),
dpad_up: pins.gpio9.into_pull_up_input(),
dpad_down: pins.gpio10.into_pull_up_input(),
dpad_right: pins.gpio11.into_pull_up_input(),
button_start: pins.gpio5.into_pull_up_input(),
let executor0 = EXECUTOR0.init(Executor::new());
executor0.run(|spawner| {
spawner
.spawn(input_loop(Input::new(p.PIN_15, gpio::Pull::Up)))
.unwrap()
});
}