embassy/embassy-nrf/src/gpiote.rs

233 lines
6.6 KiB
Rust
Raw Normal View History

2020-09-22 22:32:49 +00:00
use core::cell::Cell;
use core::ptr;
use defmt::trace;
use embassy::util::Signal;
2020-09-29 17:18:52 +00:00
use nrf52840_hal::gpio::{Input, Level, Output, Pin, Port};
2020-09-22 22:32:49 +00:00
use crate::interrupt;
2020-09-29 17:18:52 +00:00
use crate::pac::generic::Reg;
use crate::pac::gpiote::_TASKS_OUT;
2020-09-22 22:32:49 +00:00
use crate::pac::GPIOTE;
2020-09-29 17:18:52 +00:00
#[cfg(not(feature = "51"))]
use crate::pac::gpiote::{_TASKS_CLR, _TASKS_SET};
2020-09-22 22:32:49 +00:00
pub struct Gpiote {
inner: GPIOTE,
free_channels: Cell<u8>, // 0 = used, 1 = free. 8 bits for 8 channelself.
signals: [Signal<()>; 8],
}
static mut INSTANCE: *const Gpiote = ptr::null_mut();
pub enum EventPolarity {
None,
HiToLo,
LoToHi,
Toggle,
}
2020-09-29 17:18:52 +00:00
/// Polarity of the `task out` operation.
pub enum TaskOutPolarity {
Set,
Clear,
Toggle,
}
2020-09-22 22:32:49 +00:00
#[derive(defmt::Format)]
pub enum NewChannelError {
NoFreeChannels,
}
impl Gpiote {
pub fn new(gpiote: GPIOTE) -> Self {
interrupt::unpend(interrupt::GPIOTE);
interrupt::enable(interrupt::GPIOTE);
Self {
inner: gpiote,
free_channels: Cell::new(0xFF), // all 8 channels free
signals: [
Signal::new(),
Signal::new(),
Signal::new(),
Signal::new(),
Signal::new(),
Signal::new(),
Signal::new(),
Signal::new(),
],
}
}
2020-09-29 17:18:52 +00:00
fn allocate_channel(&self) -> Result<u8, NewChannelError> {
2020-09-22 22:32:49 +00:00
interrupt::free(|_| {
let chs = self.free_channels.get();
let index = chs.trailing_zeros() as usize;
if index == 8 {
return Err(NewChannelError::NoFreeChannels);
}
self.free_channels.set(chs & !(1 << index));
2020-09-29 17:18:52 +00:00
Ok(index as u8)
})
}
fn free_channel(&self, index: u8) {
interrupt::free(|_| {
self.inner.config[index as usize].write(|w| w.mode().disabled());
self.inner.intenclr.write(|w| unsafe { w.bits(1 << index) });
self.free_channels
.set(self.free_channels.get() | 1 << index);
trace!("freed ch {:u8}", index);
})
}
2020-09-22 22:32:49 +00:00
2020-09-29 17:18:52 +00:00
pub fn new_input_channel<'a, T>(
&'a self,
pin: &'a Pin<Input<T>>,
trigger_mode: EventPolarity,
) -> Result<InputChannel<'a>, NewChannelError> {
interrupt::free(|_| {
unsafe { INSTANCE = self };
let index = self.allocate_channel()?;
trace!("allocated in ch {:u8}", index as u8);
2020-09-22 22:32:49 +00:00
2020-09-29 17:18:52 +00:00
self.inner.config[index as usize].write(|w| {
2020-09-22 22:32:49 +00:00
match trigger_mode {
EventPolarity::HiToLo => w.mode().event().polarity().hi_to_lo(),
EventPolarity::LoToHi => w.mode().event().polarity().lo_to_hi(),
EventPolarity::None => w.mode().event().polarity().none(),
EventPolarity::Toggle => w.mode().event().polarity().toggle(),
};
w.port().bit(match pin.port() {
Port::Port0 => false,
Port::Port1 => true,
});
unsafe { w.psel().bits(pin.pin()) }
});
// Enable interrupt
self.inner.intenset.write(|w| unsafe { w.bits(1 << index) });
2020-09-29 17:18:52 +00:00
Ok(InputChannel {
gpiote: self,
index,
})
})
}
pub fn new_output_channel<'a, T>(
&'a self,
pin: Pin<Output<T>>,
level: Level,
task_out_polarity: TaskOutPolarity,
) -> Result<OutputChannel<'a>, NewChannelError> {
interrupt::free(|_| {
unsafe { INSTANCE = self };
let index = self.allocate_channel()?;
trace!("allocated out ch {:u8}", index);
self.inner.config[index as usize].write(|w| {
w.mode().task();
match level {
Level::High => w.outinit().high(),
Level::Low => w.outinit().low(),
};
match task_out_polarity {
TaskOutPolarity::Set => w.polarity().lo_to_hi(),
TaskOutPolarity::Clear => w.polarity().hi_to_lo(),
TaskOutPolarity::Toggle => w.polarity().toggle(),
};
w.port().bit(match pin.port() {
Port::Port0 => false,
Port::Port1 => true,
});
unsafe { w.psel().bits(pin.pin()) }
});
// Enable interrupt
self.inner.intenset.write(|w| unsafe { w.bits(1 << index) });
Ok(OutputChannel {
2020-09-22 22:32:49 +00:00
gpiote: self,
2020-09-29 17:18:52 +00:00
index,
2020-09-22 22:32:49 +00:00
})
})
}
}
2020-09-29 17:18:52 +00:00
pub struct InputChannel<'a> {
2020-09-22 22:32:49 +00:00
gpiote: &'a Gpiote,
index: u8,
}
2020-09-29 17:18:52 +00:00
impl<'a> Drop for InputChannel<'a> {
2020-09-22 22:32:49 +00:00
fn drop(&mut self) {
2020-09-29 17:18:52 +00:00
self.gpiote.free_channel(self.index);
2020-09-22 22:32:49 +00:00
}
}
2020-09-29 17:18:52 +00:00
impl<'a> InputChannel<'a> {
2020-09-22 22:32:49 +00:00
pub async fn wait(&self) -> () {
self.gpiote.signals[self.index as usize].wait().await;
}
}
2020-09-29 17:18:52 +00:00
pub struct OutputChannel<'a> {
gpiote: &'a Gpiote,
index: u8,
}
impl<'a> Drop for OutputChannel<'a> {
fn drop(&mut self) {
self.gpiote.free_channel(self.index);
}
}
impl<'a> OutputChannel<'a> {
/// Triggers `task out` (as configured with task_out_polarity, defaults to Toggle).
pub fn out(&self) {
self.gpiote.inner.tasks_out[self.index as usize].write(|w| unsafe { w.bits(1) });
}
/// Triggers `task set` (set associated pin high).
#[cfg(not(feature = "51"))]
pub fn set(&self) {
self.gpiote.inner.tasks_set[self.index as usize].write(|w| unsafe { w.bits(1) });
}
/// Triggers `task clear` (set associated pin low).
#[cfg(not(feature = "51"))]
pub fn clear(&self) {
self.gpiote.inner.tasks_clr[self.index as usize].write(|w| unsafe { w.bits(1) });
}
/// Returns reference to task_out endpoint for PPI.
pub fn task_out(&self) -> &Reg<u32, _TASKS_OUT> {
&self.gpiote.inner.tasks_out[self.index as usize]
}
/// Returns reference to task_clr endpoint for PPI.
#[cfg(not(feature = "51"))]
pub fn task_clr(&self) -> &Reg<u32, _TASKS_CLR> {
&self.gpiote.inner.tasks_clr[self.index as usize]
}
/// Returns reference to task_set endpoint for PPI.
#[cfg(not(feature = "51"))]
pub fn task_set(&self) -> &Reg<u32, _TASKS_SET> {
&self.gpiote.inner.tasks_set[self.index as usize]
}
}
2020-09-22 22:32:49 +00:00
#[interrupt]
unsafe fn GPIOTE() {
let s = &(*INSTANCE);
for i in 0..8 {
if s.inner.events_in[i].read().bits() != 0 {
s.inner.events_in[i].write(|w| w);
s.signals[i].signal(());
}
}
}