Add continuous PDM sampling with example

This commit is contained in:
Quentin Smith 2022-08-20 17:58:54 -04:00
parent 530f192acc
commit 0963b5f92c
3 changed files with 167 additions and 4 deletions

View file

@ -115,6 +115,11 @@ impl<'d> Pdm<'d> {
r.intenclr.write(|w| w.started().clear());
WAKER.wake();
}
if r.events_stopped.read().bits() != 0 {
r.intenclr.write(|w| w.stopped().clear());
WAKER.wake();
}
}
fn _set_gain(r: &pdm::RegisterBlock, gain_left: I7F1, gain_right: I7F1) {
@ -141,15 +146,20 @@ impl<'d> Pdm<'d> {
r.sample.ptr.write(|w| unsafe { w.sampleptr().bits(buf.as_mut_ptr() as u32) });
r.sample.maxcnt.write(|w| unsafe { w.buffsize().bits(N as _) });
// Reset and enable the end event
// Reset and enable the events
r.events_end.reset();
r.intenset.write(|w| w.end().set());
r.events_stopped.reset();
r.intenset.write(|w| {
w.end().set();
w.stopped().set();
w
});
// Don't reorder the start event before the previous writes. Hopefully self
// wouldn't happen anyway.
compiler_fence(Ordering::SeqCst);
r.tasks_start.write(|w| { w.tasks_start().set_bit() });
r.tasks_start.write(|w| w.tasks_start().set_bit());
// Wait for 'end' event.
poll_fn(|cx| {
@ -158,7 +168,109 @@ impl<'d> Pdm<'d> {
WAKER.register(cx.waker());
if r.events_end.read().bits() != 0 {
// END means the whole buffer has been received.
r.events_end.reset();
// Note that the beginning of the buffer might be overwritten before the task fully stops :(
r.tasks_stop.write(|w| w.tasks_stop().set_bit());
}
if r.events_stopped.read().bits() != 0 {
r.events_stopped.reset();
return Poll::Ready(());
}
Poll::Pending
})
.await;
}
/// Continuous sampling with double buffers.
///
/// A TIMER and two PPI peripherals are passed in so that precise sampling
/// can be attained. The sampling interval is expressed by selecting a
/// timer clock frequency to use along with a counter threshold to be reached.
/// For example, 1KHz can be achieved using a frequency of 1MHz and a counter
/// threshold of 1000.
///
/// A sampler closure is provided that receives the buffer of samples, noting
/// that the size of this buffer can be less than the original buffer's size.
/// A command is return from the closure that indicates whether the sampling
/// should continue or stop.
///
/// NOTE: The time spent within the callback supplied should not exceed the time
/// taken to acquire the samples into a single buffer. You should measure the
/// time taken by the callback and set the sample buffer size accordingly.
/// Exceeding this time can lead to samples becoming dropped.
pub async fn run_task_sampler<S, const N: usize>(
&mut self,
bufs: &mut [[i16; N]; 2],
mut sampler: S,
) where
S: FnMut(&[i16; N]) -> SamplerState,
{
let r = Self::regs();
r.sample.ptr.write(|w| unsafe { w.sampleptr().bits(bufs[0].as_mut_ptr() as u32) });
r.sample.maxcnt.write(|w| unsafe { w.buffsize().bits(N as _) });
// Reset and enable the events
r.events_end.reset();
r.events_started.reset();
r.events_stopped.reset();
r.intenset.write(|w| {
w.end().set();
w.started().set();
w.stopped().set();
w
});
// Don't reorder the start event before the previous writes. Hopefully self
// wouldn't happen anyway.
compiler_fence(Ordering::SeqCst);
r.tasks_start.write(|w| { w.tasks_start().set_bit() });
let mut current_buffer = 0;
let mut done = false;
// Wait for events and complete when the sampler indicates it has had enough.
poll_fn(|cx| {
let r = Self::regs();
WAKER.register(cx.waker());
if r.events_end.read().bits() != 0 {
compiler_fence(Ordering::SeqCst);
r.events_end.reset();
r.intenset.write(|w| w.end().set());
if !done { // Discard the last buffer after the user requested a stop.
if sampler(&bufs[current_buffer]) == SamplerState::Sampled {
let next_buffer = 1 - current_buffer;
current_buffer = next_buffer;
} else {
r.tasks_stop.write(|w| w.tasks_stop().set_bit());
done = true;
};
};
}
if r.events_started.read().bits() != 0 {
r.events_started.reset();
r.intenset.write(|w| w.started().set());
let next_buffer = 1 - current_buffer;
r.sample
.ptr
.write(|w| unsafe { w.sampleptr().bits(bufs[next_buffer].as_mut_ptr() as u32) });
}
if r.events_stopped.read().bits() != 0 {
r.events_stopped.reset();
r.intenset.write(|w| w.stopped().set());
return Poll::Ready(());
}

View file

@ -25,7 +25,7 @@ async fn main(_p: Spawner) {
pdm.set_gain(gain, gain);
info!("Gain = {} dB", defmt::Debug2Format(&gain));
for _ in 0..10 {
let mut buf = [0; 128];
let mut buf = [0; 1500];
pdm.sample(&mut buf).await;
info!(
"{} samples, min {=i16}, max {=i16}, RMS {=i16}",
@ -36,6 +36,7 @@ async fn main(_p: Spawner) {
buf.iter().map(|v| i32::from(*v).pow(2)).fold(0i32, |a,b| a.saturating_add(b))
/ buf.len() as i32).sqrt() as i16,
);
info!("samples = {}", &buf);
Timer::after(Duration::from_millis(100)).await;
}
}

View file

@ -0,0 +1,50 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::info;
use embassy_executor::Spawner;
use embassy_nrf::interrupt;
use embassy_nrf::pdm::{Config, Channels, Pdm, SamplerState};
use embassy_nrf::timer::Frequency;
use fixed::types::I7F1;
use num_integer::Roots;
use {defmt_rtt as _, panic_probe as _};
// Demonstrates both continuous sampling and scanning multiple channels driven by a PPI linked timer
#[embassy_executor::main]
async fn main(_p: Spawner) {
let mut p = embassy_nrf::init(Default::default());
let mut config = Config::default();
// Pins are correct for the onboard microphone on the Feather nRF52840 Sense.
config.channels = Channels::Mono;
config.gain_left = I7F1::from_bits(5); // 2.5 dB
let mut pdm = Pdm::new(p.PDM, interrupt::take!(PDM), &mut p.P0_00, &mut p.P0_01, config);
let mut bufs = [[0; 500]; 2];
pdm
.run_task_sampler(
&mut bufs,
move |buf| {
// NOTE: It is important that the time spent within this callback
// does not exceed the time taken to acquire the 1500 samples we
// have in this example, which would be 10us + 2us per
// sample * 1500 = 18ms. You need to measure the time taken here
// and set the sample buffer size accordingly. Exceeding this
// time can lead to the peripheral re-writing the other buffer.
info!(
"{} samples, min {=i16}, max {=i16}, RMS {=i16}",
buf.len(),
buf.iter().min().unwrap(),
buf.iter().max().unwrap(),
(
buf.iter().map(|v| i32::from(*v).pow(2)).fold(0i32, |a,b| a.saturating_add(b))
/ buf.len() as i32).sqrt() as i16,
);
SamplerState::Sampled
},
)
.await;
}