embassy-rp: Add multicore support
This commit is contained in:
parent
5d4f09156a
commit
1ee58492fb
6 changed files with 475 additions and 2 deletions
|
@ -50,7 +50,7 @@ nb = "1.0.0"
|
|||
cfg-if = "1.0.0"
|
||||
cortex-m-rt = ">=0.6.15,<0.8"
|
||||
cortex-m = "0.7.6"
|
||||
critical-section = "1.1"
|
||||
critical-section = { version = "1.1", features = ["restore-state-u8"] }
|
||||
futures = { version = "0.3.17", default-features = false, features = ["async-await"] }
|
||||
chrono = { version = "0.4", default-features = false, optional = true }
|
||||
embedded-io = { version = "0.4.0", features = ["async"], optional = true }
|
||||
|
|
142
embassy-rp/src/critical_section_impl.rs
Normal file
142
embassy-rp/src/critical_section_impl.rs
Normal file
|
@ -0,0 +1,142 @@
|
|||
use core::sync::atomic::{AtomicU8, Ordering};
|
||||
|
||||
use crate::pac;
|
||||
|
||||
struct RpSpinlockCs;
|
||||
critical_section::set_impl!(RpSpinlockCs);
|
||||
|
||||
/// Marker value to indicate no-one has the lock.
|
||||
///
|
||||
/// Initialising `LOCK_OWNER` to 0 means cheaper static initialisation so it's the best choice
|
||||
const LOCK_UNOWNED: u8 = 0;
|
||||
|
||||
/// Indicates which core owns the lock so that we can call critical_section recursively.
|
||||
///
|
||||
/// 0 = no one has the lock, 1 = core0 has the lock, 2 = core1 has the lock
|
||||
static LOCK_OWNER: AtomicU8 = AtomicU8::new(LOCK_UNOWNED);
|
||||
|
||||
/// Marker value to indicate that we already owned the lock when we started the `critical_section`.
|
||||
///
|
||||
/// Since we can't take the spinlock when we already have it, we need some other way to keep track of `critical_section` ownership.
|
||||
/// `critical_section` provides a token for communicating between `acquire` and `release` so we use that.
|
||||
/// If we're the outermost call to `critical_section` we use the values 0 and 1 to indicate we should release the spinlock and set the interrupts back to disabled and enabled, respectively.
|
||||
/// The value 2 indicates that we aren't the outermost call, and should not release the spinlock or re-enable interrupts in `release`
|
||||
const LOCK_ALREADY_OWNED: u8 = 2;
|
||||
|
||||
unsafe impl critical_section::Impl for RpSpinlockCs {
|
||||
unsafe fn acquire() -> u8 {
|
||||
RpSpinlockCs::acquire()
|
||||
}
|
||||
|
||||
unsafe fn release(token: u8) {
|
||||
RpSpinlockCs::release(token);
|
||||
}
|
||||
}
|
||||
|
||||
impl RpSpinlockCs {
|
||||
unsafe fn acquire() -> u8 {
|
||||
// Store the initial interrupt state and current core id in stack variables
|
||||
let interrupts_active = cortex_m::register::primask::read().is_active();
|
||||
// We reserved 0 as our `LOCK_UNOWNED` value, so add 1 to core_id so we get 1 for core0, 2 for core1.
|
||||
let core = pac::SIO.cpuid().read() as u8 + 1;
|
||||
// Do we already own the spinlock?
|
||||
if LOCK_OWNER.load(Ordering::Acquire) == core {
|
||||
// We already own the lock, so we must have called acquire within a critical_section.
|
||||
// Return the magic inner-loop value so that we know not to re-enable interrupts in release()
|
||||
LOCK_ALREADY_OWNED
|
||||
} else {
|
||||
// Spin until we get the lock
|
||||
loop {
|
||||
// Need to disable interrupts to ensure that we will not deadlock
|
||||
// if an interrupt enters critical_section::Impl after we acquire the lock
|
||||
cortex_m::interrupt::disable();
|
||||
// Ensure the compiler doesn't re-order accesses and violate safety here
|
||||
core::sync::atomic::compiler_fence(Ordering::SeqCst);
|
||||
// Read the spinlock reserved for `critical_section`
|
||||
if let Some(lock) = Spinlock31::try_claim() {
|
||||
// We just acquired the lock.
|
||||
// 1. Forget it, so we don't immediately unlock
|
||||
core::mem::forget(lock);
|
||||
// 2. Store which core we are so we can tell if we're called recursively
|
||||
LOCK_OWNER.store(core, Ordering::Relaxed);
|
||||
break;
|
||||
}
|
||||
// We didn't get the lock, enable interrupts if they were enabled before we started
|
||||
if interrupts_active {
|
||||
cortex_m::interrupt::enable();
|
||||
}
|
||||
}
|
||||
// If we broke out of the loop we have just acquired the lock
|
||||
// As the outermost loop, we want to return the interrupt status to restore later
|
||||
interrupts_active as _
|
||||
}
|
||||
}
|
||||
|
||||
unsafe fn release(token: u8) {
|
||||
// Did we already own the lock at the start of the `critical_section`?
|
||||
if token != LOCK_ALREADY_OWNED {
|
||||
// No, it wasn't owned at the start of this `critical_section`, so this core no longer owns it.
|
||||
// Set `LOCK_OWNER` back to `LOCK_UNOWNED` to ensure the next critical section tries to obtain the spinlock instead
|
||||
LOCK_OWNER.store(LOCK_UNOWNED, Ordering::Relaxed);
|
||||
// Ensure the compiler doesn't re-order accesses and violate safety here
|
||||
core::sync::atomic::compiler_fence(Ordering::SeqCst);
|
||||
// Release the spinlock to allow others to enter critical_section again
|
||||
Spinlock31::release();
|
||||
// Re-enable interrupts if they were enabled when we first called acquire()
|
||||
// We only do this on the outermost `critical_section` to ensure interrupts stay disabled
|
||||
// for the whole time that we have the lock
|
||||
if token != 0 {
|
||||
cortex_m::interrupt::enable();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Spinlock<const N: usize>(core::marker::PhantomData<()>)
|
||||
where
|
||||
Spinlock<N>: SpinlockValid;
|
||||
|
||||
impl<const N: usize> Spinlock<N>
|
||||
where
|
||||
Spinlock<N>: SpinlockValid,
|
||||
{
|
||||
/// Try to claim the spinlock. Will return `Some(Self)` if the lock is obtained, and `None` if the lock is
|
||||
/// already in use somewhere else.
|
||||
pub fn try_claim() -> Option<Self> {
|
||||
// Safety: We're only reading from this register
|
||||
unsafe {
|
||||
let lock = pac::SIO.spinlock(N).read();
|
||||
if lock > 0 {
|
||||
Some(Self(core::marker::PhantomData))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Clear a locked spin-lock.
|
||||
///
|
||||
/// # Safety
|
||||
///
|
||||
/// Only call this function if you hold the spin-lock.
|
||||
pub unsafe fn release() {
|
||||
unsafe {
|
||||
// Write (any value): release the lock
|
||||
pac::SIO.spinlock(N).write_value(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<const N: usize> Drop for Spinlock<N>
|
||||
where
|
||||
Spinlock<N>: SpinlockValid,
|
||||
{
|
||||
fn drop(&mut self) {
|
||||
// This is safe because we own the object, and hence hold the lock.
|
||||
unsafe { Self::release() }
|
||||
}
|
||||
}
|
||||
|
||||
pub(crate) type Spinlock31 = Spinlock<31>;
|
||||
pub trait SpinlockValid {}
|
||||
impl SpinlockValid for Spinlock<31> {}
|
|
@ -5,6 +5,7 @@
|
|||
// This mod MUST go first, so that the others see its macros.
|
||||
pub(crate) mod fmt;
|
||||
|
||||
mod critical_section_impl;
|
||||
mod intrinsics;
|
||||
|
||||
pub mod adc;
|
||||
|
@ -23,6 +24,7 @@ pub mod usb;
|
|||
|
||||
pub mod clocks;
|
||||
pub mod flash;
|
||||
pub mod multicore;
|
||||
mod reset;
|
||||
|
||||
// Reexports
|
||||
|
|
266
embassy-rp/src/multicore.rs
Normal file
266
embassy-rp/src/multicore.rs
Normal file
|
@ -0,0 +1,266 @@
|
|||
//! Multicore support
|
||||
//!
|
||||
//! This module handles setup of the 2nd cpu core on the rp2040, which we refer to as core1.
|
||||
//! It provides functionality for setting up the stack, and starting core1.
|
||||
//!
|
||||
//! The entrypoint for core1 can be any function that never returns, including closures.
|
||||
|
||||
use core::mem::ManuallyDrop;
|
||||
use core::sync::atomic::{compiler_fence, Ordering};
|
||||
|
||||
use crate::pac;
|
||||
|
||||
/// Errors for multicore operations.
|
||||
#[derive(Debug)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub enum Error {
|
||||
/// Operation is invalid on this core.
|
||||
InvalidCore,
|
||||
/// Core was unresponsive to commands.
|
||||
Unresponsive,
|
||||
}
|
||||
|
||||
/// Core ID
|
||||
#[derive(Debug)]
|
||||
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
|
||||
pub enum CoreId {
|
||||
Core0,
|
||||
Core1,
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn install_stack_guard(stack_bottom: *mut usize) {
|
||||
let core = unsafe { cortex_m::Peripherals::steal() };
|
||||
|
||||
// Trap if MPU is already configured
|
||||
if core.MPU.ctrl.read() != 0 {
|
||||
cortex_m::asm::udf();
|
||||
}
|
||||
|
||||
// The minimum we can protect is 32 bytes on a 32 byte boundary, so round up which will
|
||||
// just shorten the valid stack range a tad.
|
||||
let addr = (stack_bottom as u32 + 31) & !31;
|
||||
// Mask is 1 bit per 32 bytes of the 256 byte range... clear the bit for the segment we want
|
||||
let subregion_select = 0xff ^ (1 << ((addr >> 5) & 7));
|
||||
unsafe {
|
||||
core.MPU.ctrl.write(5); // enable mpu with background default map
|
||||
core.MPU.rbar.write((addr & !0xff) | 0x8);
|
||||
core.MPU.rasr.write(
|
||||
1 // enable region
|
||||
| (0x7 << 1) // size 2^(7 + 1) = 256
|
||||
| (subregion_select << 8)
|
||||
| 0x10000000, // XN = disable instruction fetch; no other bits means no permissions
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn core1_setup(stack_bottom: *mut usize) {
|
||||
install_stack_guard(stack_bottom);
|
||||
// TODO: irq priorities
|
||||
}
|
||||
|
||||
/// Multicore execution management.
|
||||
pub struct Multicore {
|
||||
cores: (Core, Core),
|
||||
}
|
||||
|
||||
/// Data type for a properly aligned stack of N 32-bit (usize) words
|
||||
#[repr(C, align(32))]
|
||||
pub struct Stack<const SIZE: usize> {
|
||||
/// Memory to be used for the stack
|
||||
pub mem: [usize; SIZE],
|
||||
}
|
||||
|
||||
impl<const SIZE: usize> Stack<SIZE> {
|
||||
/// Construct a stack of length SIZE, initialized to 0
|
||||
pub const fn new() -> Stack<SIZE> {
|
||||
Stack { mem: [0; SIZE] }
|
||||
}
|
||||
}
|
||||
|
||||
impl Multicore {
|
||||
/// Create a new |Multicore| instance.
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
cores: (Core { id: CoreId::Core0 }, Core { id: CoreId::Core1 }),
|
||||
}
|
||||
}
|
||||
|
||||
/// Get the available |Core| instances.
|
||||
pub fn cores(&mut self) -> &mut (Core, Core) {
|
||||
&mut self.cores
|
||||
}
|
||||
}
|
||||
|
||||
/// A handle for controlling a logical core.
|
||||
pub struct Core {
|
||||
pub id: CoreId,
|
||||
}
|
||||
|
||||
impl Core {
|
||||
/// Spawn a function on this core.
|
||||
pub fn spawn<F>(&mut self, stack: &'static mut [usize], entry: F) -> Result<(), Error>
|
||||
where
|
||||
F: FnOnce() -> bad::Never + Send + 'static,
|
||||
{
|
||||
fn fifo_write(value: u32) {
|
||||
unsafe {
|
||||
let sio = pac::SIO;
|
||||
// Wait for the FIFO to have some space
|
||||
while !sio.fifo().st().read().rdy() {
|
||||
cortex_m::asm::nop();
|
||||
}
|
||||
// Signal that it's safe for core 0 to get rid of the original value now.
|
||||
sio.fifo().wr().write_value(value);
|
||||
}
|
||||
|
||||
// Fire off an event to the other core.
|
||||
// This is required as the other core may be `wfe` (waiting for event)
|
||||
cortex_m::asm::sev();
|
||||
}
|
||||
|
||||
fn fifo_read() -> u32 {
|
||||
unsafe {
|
||||
let sio = pac::SIO;
|
||||
// Keep trying until FIFO has data
|
||||
loop {
|
||||
if sio.fifo().st().read().vld() {
|
||||
return sio.fifo().rd().read();
|
||||
} else {
|
||||
// We expect the sending core to `sev` on write.
|
||||
cortex_m::asm::wfe();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn fifo_drain() {
|
||||
unsafe {
|
||||
let sio = pac::SIO;
|
||||
while sio.fifo().st().read().vld() {
|
||||
let _ = sio.fifo().rd().read();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
match self.id {
|
||||
CoreId::Core1 => {
|
||||
// The first two ignored `u64` parameters are there to take up all of the registers,
|
||||
// which means that the rest of the arguments are taken from the stack,
|
||||
// where we're able to put them from core 0.
|
||||
extern "C" fn core1_startup<F: FnOnce() -> bad::Never>(
|
||||
_: u64,
|
||||
_: u64,
|
||||
entry: &mut ManuallyDrop<F>,
|
||||
stack_bottom: *mut usize,
|
||||
) -> ! {
|
||||
core1_setup(stack_bottom);
|
||||
let entry = unsafe { ManuallyDrop::take(entry) };
|
||||
// Signal that it's safe for core 0 to get rid of the original value now.
|
||||
fifo_write(1);
|
||||
entry()
|
||||
}
|
||||
|
||||
// Reset the core
|
||||
unsafe {
|
||||
let psm = pac::PSM;
|
||||
psm.frce_off().modify(|w| w.set_proc1(true));
|
||||
while !psm.frce_off().read().proc1() {
|
||||
cortex_m::asm::nop();
|
||||
}
|
||||
psm.frce_off().modify(|w| w.set_proc1(false));
|
||||
}
|
||||
|
||||
// Set up the stack
|
||||
let mut stack_ptr = unsafe { stack.as_mut_ptr().add(stack.len()) };
|
||||
|
||||
// We don't want to drop this, since it's getting moved to the other core.
|
||||
let mut entry = ManuallyDrop::new(entry);
|
||||
|
||||
// Push the arguments to `core1_startup` onto the stack.
|
||||
unsafe {
|
||||
// Push `stack_bottom`.
|
||||
stack_ptr = stack_ptr.sub(1);
|
||||
stack_ptr.cast::<*mut usize>().write(stack.as_mut_ptr());
|
||||
|
||||
// Push `entry`.
|
||||
stack_ptr = stack_ptr.sub(1);
|
||||
stack_ptr.cast::<&mut ManuallyDrop<F>>().write(&mut entry);
|
||||
}
|
||||
|
||||
// Make sure the compiler does not reorder the stack writes after to after the
|
||||
// below FIFO writes, which would result in them not being seen by the second
|
||||
// core.
|
||||
//
|
||||
// From the compiler perspective, this doesn't guarantee that the second core
|
||||
// actually sees those writes. However, we know that the RP2040 doesn't have
|
||||
// memory caches, and writes happen in-order.
|
||||
compiler_fence(Ordering::Release);
|
||||
|
||||
let p = unsafe { cortex_m::Peripherals::steal() };
|
||||
let vector_table = p.SCB.vtor.read();
|
||||
|
||||
// After reset, core 1 is waiting to receive commands over FIFO.
|
||||
// This is the sequence to have it jump to some code.
|
||||
let cmd_seq = [
|
||||
0,
|
||||
0,
|
||||
1,
|
||||
vector_table as usize,
|
||||
stack_ptr as usize,
|
||||
core1_startup::<F> as usize,
|
||||
];
|
||||
|
||||
let mut seq = 0;
|
||||
let mut fails = 0;
|
||||
loop {
|
||||
let cmd = cmd_seq[seq] as u32;
|
||||
if cmd == 0 {
|
||||
fifo_drain();
|
||||
cortex_m::asm::sev();
|
||||
}
|
||||
fifo_write(cmd);
|
||||
|
||||
let response = fifo_read();
|
||||
if cmd == response {
|
||||
seq += 1;
|
||||
} else {
|
||||
seq = 0;
|
||||
fails += 1;
|
||||
if fails > 16 {
|
||||
// The second core isn't responding, and isn't going to take the entrypoint,
|
||||
// so we have to drop it ourselves.
|
||||
drop(ManuallyDrop::into_inner(entry));
|
||||
return Err(Error::Unresponsive);
|
||||
}
|
||||
}
|
||||
if seq >= cmd_seq.len() {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Wait until the other core has copied `entry` before returning.
|
||||
fifo_read();
|
||||
|
||||
Ok(())
|
||||
}
|
||||
_ => Err(Error::InvalidCore),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// https://github.com/nvzqz/bad-rs/blob/master/src/never.rs
|
||||
mod bad {
|
||||
pub(crate) type Never = <F as HasOutput>::Output;
|
||||
|
||||
pub trait HasOutput {
|
||||
type Output;
|
||||
}
|
||||
|
||||
impl<O> HasOutput for fn() -> O {
|
||||
type Output = O;
|
||||
}
|
||||
|
||||
type F = fn() -> !;
|
||||
}
|
|
@ -18,7 +18,8 @@ embassy-usb-logger = { version = "0.1.0", path = "../../embassy-usb-logger" }
|
|||
defmt = "0.3"
|
||||
defmt-rtt = "0.4"
|
||||
|
||||
cortex-m = { version = "0.7.6", features = ["critical-section-single-core"] }
|
||||
#cortex-m = { version = "0.7.6", features = ["critical-section-single-core"] }
|
||||
cortex-m = { version = "0.7.6" }
|
||||
cortex-m-rt = "0.7.0"
|
||||
panic-probe = { version = "0.3", features = ["print-defmt"] }
|
||||
futures = { version = "0.3.17", default-features = false, features = ["async-await", "cfg-target-has-atomic", "unstable"] }
|
||||
|
|
62
examples/rp/src/bin/multicore.rs
Normal file
62
examples/rp/src/bin/multicore.rs
Normal file
|
@ -0,0 +1,62 @@
|
|||
#![no_std]
|
||||
#![no_main]
|
||||
#![feature(type_alias_impl_trait)]
|
||||
|
||||
use defmt::*;
|
||||
use embassy_executor::Executor;
|
||||
use embassy_executor::_export::StaticCell;
|
||||
use embassy_rp::gpio::{Level, Output};
|
||||
use embassy_rp::peripherals::PIN_25;
|
||||
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
|
||||
use embassy_sync::channel::Channel;
|
||||
use embassy_time::{Duration, Timer};
|
||||
use embassy_rp::multicore::{Multicore, Stack};
|
||||
use {defmt_rtt as _, panic_probe as _};
|
||||
|
||||
static mut CORE1_STACK: Stack<4096> = Stack::new();
|
||||
static EXECUTOR0: StaticCell<Executor> = StaticCell::new();
|
||||
static EXECUTOR1: StaticCell<Executor> = StaticCell::new();
|
||||
static CHANNEL: Channel<CriticalSectionRawMutex, LedState, 1> = Channel::new();
|
||||
|
||||
enum LedState {
|
||||
On,
|
||||
Off,
|
||||
}
|
||||
|
||||
#[cortex_m_rt::entry]
|
||||
fn main() -> ! {
|
||||
let p = embassy_rp::init(Default::default());
|
||||
let led = Output::new(p.PIN_25, Level::Low);
|
||||
|
||||
let mut mc = Multicore::new();
|
||||
let (_, core1) = mc.cores();
|
||||
let _ = core1.spawn(unsafe { &mut CORE1_STACK.mem }, move || {
|
||||
let executor1 = EXECUTOR1.init(Executor::new());
|
||||
executor1.run(|spawner| unwrap!(spawner.spawn(core1_task(led))));
|
||||
});
|
||||
|
||||
let executor0 = EXECUTOR0.init(Executor::new());
|
||||
executor0.run(|spawner| unwrap!(spawner.spawn(core0_task())));
|
||||
}
|
||||
|
||||
#[embassy_executor::task]
|
||||
async fn core0_task() {
|
||||
info!("Hello from core 0");
|
||||
loop {
|
||||
CHANNEL.send(LedState::On).await;
|
||||
Timer::after(Duration::from_millis(100)).await;
|
||||
CHANNEL.send(LedState::Off).await;
|
||||
Timer::after(Duration::from_millis(400)).await;
|
||||
}
|
||||
}
|
||||
|
||||
#[embassy_executor::task]
|
||||
async fn core1_task(mut led: Output<'static, PIN_25>) {
|
||||
info!("Hello from core 1");
|
||||
loop {
|
||||
match CHANNEL.recv().await {
|
||||
LedState::On => led.set_high(),
|
||||
LedState::Off => led.set_low(),
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue