Merge pull request #1565 from JuliDi/main

Implement DMA for DAC on STM32
This commit is contained in:
Dario Nieuwenhuis 2023-06-29 08:54:28 +00:00 committed by GitHub
commit 6eb46c419c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 757 additions and 285 deletions

View file

@ -699,6 +699,8 @@ fn main() {
// SDMMCv1 uses the same channel for both directions, so just implement for RX // SDMMCv1 uses the same channel for both directions, so just implement for RX
(("sdmmc", "RX"), quote!(crate::sdmmc::SdmmcDma)), (("sdmmc", "RX"), quote!(crate::sdmmc::SdmmcDma)),
(("quadspi", "QUADSPI"), quote!(crate::qspi::QuadDma)), (("quadspi", "QUADSPI"), quote!(crate::qspi::QuadDma)),
(("dac", "CH1"), quote!(crate::dac::DmaCh1)),
(("dac", "CH2"), quote!(crate::dac::DmaCh2)),
] ]
.into(); .into();

View file

@ -1,260 +0,0 @@
#![macro_use]
use embassy_hal_common::{into_ref, PeripheralRef};
use crate::pac::dac;
use crate::rcc::RccPeripheral;
use crate::{peripherals, Peripheral};
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
UnconfiguredChannel,
InvalidValue,
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Channel {
Ch1,
Ch2,
}
impl Channel {
fn index(&self) -> usize {
match self {
Channel::Ch1 => 0,
Channel::Ch2 => 1,
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Ch1Trigger {
Tim6,
Tim3,
Tim7,
Tim15,
Tim2,
Exti9,
Software,
}
impl Ch1Trigger {
fn tsel(&self) -> dac::vals::Tsel1 {
match self {
Ch1Trigger::Tim6 => dac::vals::Tsel1::TIM6_TRGO,
Ch1Trigger::Tim3 => dac::vals::Tsel1::TIM3_TRGO,
Ch1Trigger::Tim7 => dac::vals::Tsel1::TIM7_TRGO,
Ch1Trigger::Tim15 => dac::vals::Tsel1::TIM15_TRGO,
Ch1Trigger::Tim2 => dac::vals::Tsel1::TIM2_TRGO,
Ch1Trigger::Exti9 => dac::vals::Tsel1::EXTI9,
Ch1Trigger::Software => dac::vals::Tsel1::SOFTWARE,
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Ch2Trigger {
Tim6,
Tim8,
Tim7,
Tim5,
Tim2,
Tim4,
Exti9,
Software,
}
impl Ch2Trigger {
fn tsel(&self) -> dac::vals::Tsel2 {
match self {
Ch2Trigger::Tim6 => dac::vals::Tsel2::TIM6_TRGO,
Ch2Trigger::Tim8 => dac::vals::Tsel2::TIM8_TRGO,
Ch2Trigger::Tim7 => dac::vals::Tsel2::TIM7_TRGO,
Ch2Trigger::Tim5 => dac::vals::Tsel2::TIM5_TRGO,
Ch2Trigger::Tim2 => dac::vals::Tsel2::TIM2_TRGO,
Ch2Trigger::Tim4 => dac::vals::Tsel2::TIM4_TRGO,
Ch2Trigger::Exti9 => dac::vals::Tsel2::EXTI9,
Ch2Trigger::Software => dac::vals::Tsel2::SOFTWARE,
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Alignment {
Left,
Right,
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Value {
Bit8(u8),
Bit12(u16, Alignment),
}
pub struct Dac<'d, T: Instance> {
channels: u8,
_peri: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Dac<'d, T> {
pub fn new_1ch(peri: impl Peripheral<P = T> + 'd, _ch1: impl Peripheral<P = impl DacPin<T, 1>> + 'd) -> Self {
into_ref!(peri);
Self::new_inner(peri, 1)
}
pub fn new_2ch(
peri: impl Peripheral<P = T> + 'd,
_ch1: impl Peripheral<P = impl DacPin<T, 1>> + 'd,
_ch2: impl Peripheral<P = impl DacPin<T, 2>> + 'd,
) -> Self {
into_ref!(peri);
Self::new_inner(peri, 2)
}
fn new_inner(peri: PeripheralRef<'d, T>, channels: u8) -> Self {
T::enable();
T::reset();
T::regs().cr().modify(|reg| {
for ch in 0..channels {
reg.set_en(ch as usize, true);
}
});
Self { channels, _peri: peri }
}
/// Check the channel is configured
fn check_channel_exists(&self, ch: Channel) -> Result<(), Error> {
if ch == Channel::Ch2 && self.channels < 2 {
Err(Error::UnconfiguredChannel)
} else {
Ok(())
}
}
fn set_channel_enable(&mut self, ch: Channel, on: bool) -> Result<(), Error> {
self.check_channel_exists(ch)?;
T::regs().cr().modify(|reg| {
reg.set_en(ch.index(), on);
});
Ok(())
}
pub fn enable_channel(&mut self, ch: Channel) -> Result<(), Error> {
self.set_channel_enable(ch, true)
}
pub fn disable_channel(&mut self, ch: Channel) -> Result<(), Error> {
self.set_channel_enable(ch, false)
}
pub fn select_trigger_ch1(&mut self, trigger: Ch1Trigger) -> Result<(), Error> {
self.check_channel_exists(Channel::Ch1)?;
unwrap!(self.disable_channel(Channel::Ch1));
T::regs().cr().modify(|reg| {
reg.set_tsel1(trigger.tsel());
});
Ok(())
}
pub fn select_trigger_ch2(&mut self, trigger: Ch2Trigger) -> Result<(), Error> {
self.check_channel_exists(Channel::Ch2)?;
unwrap!(self.disable_channel(Channel::Ch2));
T::regs().cr().modify(|reg| {
reg.set_tsel2(trigger.tsel());
});
Ok(())
}
pub fn trigger(&mut self, ch: Channel) -> Result<(), Error> {
self.check_channel_exists(ch)?;
T::regs().swtrigr().write(|reg| {
reg.set_swtrig(ch.index(), true);
});
Ok(())
}
pub fn trigger_all(&mut self) {
T::regs().swtrigr().write(|reg| {
reg.set_swtrig(Channel::Ch1.index(), true);
reg.set_swtrig(Channel::Ch2.index(), true);
});
}
pub fn set(&mut self, ch: Channel, value: Value) -> Result<(), Error> {
self.check_channel_exists(ch)?;
match value {
Value::Bit8(v) => T::regs().dhr8r(ch.index()).write(|reg| reg.set_dhr(v)),
Value::Bit12(v, Alignment::Left) => T::regs().dhr12l(ch.index()).write(|reg| reg.set_dhr(v)),
Value::Bit12(v, Alignment::Right) => T::regs().dhr12r(ch.index()).write(|reg| reg.set_dhr(v)),
}
Ok(())
}
}
pub(crate) mod sealed {
pub trait Instance {
fn regs() -> &'static crate::pac::dac::Dac;
}
}
pub trait Instance: sealed::Instance + RccPeripheral + 'static {}
pub trait DacPin<T: Instance, const C: u8>: crate::gpio::Pin + 'static {}
foreach_peripheral!(
(dac, $inst:ident) => {
// H7 uses single bit for both DAC1 and DAC2, this is a hack until a proper fix is implemented
#[cfg(rcc_h7)]
impl crate::rcc::sealed::RccPeripheral for peripherals::$inst {
fn frequency() -> crate::time::Hertz {
critical_section::with(|_| unsafe {
crate::rcc::get_freqs().apb1
})
}
fn reset() {
critical_section::with(|_| {
crate::pac::RCC.apb1lrstr().modify(|w| w.set_dac12rst(true));
crate::pac::RCC.apb1lrstr().modify(|w| w.set_dac12rst(false));
})
}
fn enable() {
critical_section::with(|_| {
crate::pac::RCC.apb1lenr().modify(|w| w.set_dac12en(true));
})
}
fn disable() {
critical_section::with(|_| {
crate::pac::RCC.apb1lenr().modify(|w| w.set_dac12en(false));
})
}
}
#[cfg(rcc_h7)]
impl crate::rcc::RccPeripheral for peripherals::$inst {}
impl crate::dac::sealed::Instance for peripherals::$inst {
fn regs() -> &'static crate::pac::dac::Dac {
&crate::pac::$inst
}
}
impl crate::dac::Instance for peripherals::$inst {}
};
);
macro_rules! impl_dac_pin {
($inst:ident, $pin:ident, $ch:expr) => {
impl crate::dac::DacPin<peripherals::$inst, $ch> for crate::peripherals::$pin {}
};
}

View file

@ -0,0 +1,570 @@
#![macro_use]
//! Provide access to the STM32 digital-to-analog converter (DAC).
use core::marker::PhantomData;
use embassy_hal_common::{into_ref, PeripheralRef};
use crate::pac::dac;
use crate::rcc::RccPeripheral;
use crate::{peripherals, Peripheral};
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Curstom Errors
pub enum Error {
UnconfiguredChannel,
InvalidValue,
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// DAC Channels
pub enum Channel {
Ch1,
Ch2,
}
impl Channel {
const fn index(&self) -> usize {
match self {
Channel::Ch1 => 0,
Channel::Ch2 => 1,
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Trigger sources for CH1
pub enum Ch1Trigger {
Tim6,
Tim3,
Tim7,
Tim15,
Tim2,
Exti9,
Software,
}
impl Ch1Trigger {
fn tsel(&self) -> dac::vals::Tsel1 {
match self {
Ch1Trigger::Tim6 => dac::vals::Tsel1::TIM6_TRGO,
Ch1Trigger::Tim3 => dac::vals::Tsel1::TIM3_TRGO,
Ch1Trigger::Tim7 => dac::vals::Tsel1::TIM7_TRGO,
Ch1Trigger::Tim15 => dac::vals::Tsel1::TIM15_TRGO,
Ch1Trigger::Tim2 => dac::vals::Tsel1::TIM2_TRGO,
Ch1Trigger::Exti9 => dac::vals::Tsel1::EXTI9,
Ch1Trigger::Software => dac::vals::Tsel1::SOFTWARE,
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Trigger sources for CH2
pub enum Ch2Trigger {
Tim6,
Tim8,
Tim7,
Tim5,
Tim2,
Tim4,
Exti9,
Software,
}
impl Ch2Trigger {
fn tsel(&self) -> dac::vals::Tsel2 {
match self {
Ch2Trigger::Tim6 => dac::vals::Tsel2::TIM6_TRGO,
Ch2Trigger::Tim8 => dac::vals::Tsel2::TIM8_TRGO,
Ch2Trigger::Tim7 => dac::vals::Tsel2::TIM7_TRGO,
Ch2Trigger::Tim5 => dac::vals::Tsel2::TIM5_TRGO,
Ch2Trigger::Tim2 => dac::vals::Tsel2::TIM2_TRGO,
Ch2Trigger::Tim4 => dac::vals::Tsel2::TIM4_TRGO,
Ch2Trigger::Exti9 => dac::vals::Tsel2::EXTI9,
Ch2Trigger::Software => dac::vals::Tsel2::SOFTWARE,
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Single 8 or 12 bit value that can be output by the DAC
pub enum Value {
// 8 bit value
Bit8(u8),
// 12 bit value stored in a u16, left-aligned
Bit12Left(u16),
// 12 bit value stored in a u16, right-aligned
Bit12Right(u16),
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Array variant of [`Value`]
pub enum ValueArray<'a> {
// 8 bit values
Bit8(&'a [u8]),
// 12 bit value stored in a u16, left-aligned
Bit12Left(&'a [u16]),
// 12 bit values stored in a u16, right-aligned
Bit12Right(&'a [u16]),
}
/// Provide common functions for DAC channels
pub trait DacChannel<T: Instance, Tx> {
const CHANNEL: Channel;
/// Enable trigger of the given channel
fn set_trigger_enable(&mut self, on: bool) -> Result<(), Error> {
T::regs().cr().modify(|reg| {
reg.set_ten(Self::CHANNEL.index(), on);
});
Ok(())
}
/// Set mode register of the given channel
#[cfg(dac_v2)]
fn set_channel_mode(&mut self, val: u8) -> Result<(), Error> {
T::regs().mcr().modify(|reg| {
reg.set_mode(Self::CHANNEL.index(), val);
});
Ok(())
}
/// Set enable register of the given channel
fn set_channel_enable(&mut self, on: bool) -> Result<(), Error> {
T::regs().cr().modify(|reg| {
reg.set_en(Self::CHANNEL.index(), on);
});
Ok(())
}
/// Enable the DAC channel `ch`
fn enable_channel(&mut self) -> Result<(), Error> {
self.set_channel_enable(true)
}
/// Disable the DAC channel `ch`
fn disable_channel(&mut self) -> Result<(), Error> {
self.set_channel_enable(false)
}
/// Perform a software trigger on `ch`
fn trigger(&mut self) {
T::regs().swtrigr().write(|reg| {
reg.set_swtrig(Self::CHANNEL.index(), true);
});
}
/// Set a value to be output by the DAC on trigger.
///
/// The `value` is written to the corresponding "data holding register".
fn set(&mut self, value: Value) -> Result<(), Error> {
match value {
Value::Bit8(v) => T::regs().dhr8r(Self::CHANNEL.index()).write(|reg| reg.set_dhr(v)),
Value::Bit12Left(v) => T::regs().dhr12l(Self::CHANNEL.index()).write(|reg| reg.set_dhr(v)),
Value::Bit12Right(v) => T::regs().dhr12r(Self::CHANNEL.index()).write(|reg| reg.set_dhr(v)),
}
Ok(())
}
}
/// Hold two DAC channels
///
/// Note: This consumes the DAC `Instance` only once, allowing to get both channels simultaneously.
///
/// # Example for obtaining both DAC channels
///
/// ```ignore
/// // DMA channels and pins may need to be changed for your controller
/// let (dac_ch1, dac_ch2) =
/// embassy_stm32::dac::Dac::new(p.DAC1, p.DMA1_CH3, p.DMA1_CH4, p.PA4, p.PA5).split();
/// ```
pub struct Dac<'d, T: Instance, TxCh1, TxCh2> {
ch1: DacCh1<'d, T, TxCh1>,
ch2: DacCh2<'d, T, TxCh2>,
}
/// DAC CH1
///
/// Note: This consumes the DAC `Instance`. Use [`Dac::new`] to get both channels simultaneously.
pub struct DacCh1<'d, T: Instance, Tx> {
/// To consume T
_peri: PeripheralRef<'d, T>,
#[allow(unused)] // For chips whose DMA is not (yet) supported
dma: PeripheralRef<'d, Tx>,
}
/// DAC CH2
///
/// Note: This consumes the DAC `Instance`. Use [`Dac::new`] to get both channels simultaneously.
pub struct DacCh2<'d, T: Instance, Tx> {
/// Instead of PeripheralRef to consume T
phantom: PhantomData<&'d mut T>,
#[allow(unused)] // For chips whose DMA is not (yet) supported
dma: PeripheralRef<'d, Tx>,
}
impl<'d, T: Instance, Tx> DacCh1<'d, T, Tx> {
/// Obtain DAC CH1
pub fn new(
peri: impl Peripheral<P = T> + 'd,
dma: impl Peripheral<P = Tx> + 'd,
_pin: impl Peripheral<P = impl DacPin<T, 1>> + 'd,
) -> Self {
into_ref!(peri, dma);
T::enable();
T::reset();
let mut dac = Self { _peri: peri, dma };
// Configure each activated channel. All results can be `unwrap`ed since they
// will only error if the channel is not configured (i.e. ch1, ch2 are false)
#[cfg(dac_v2)]
dac.set_channel_mode(0).unwrap();
dac.enable_channel().unwrap();
dac.set_trigger_enable(true).unwrap();
dac
}
/// Select a new trigger for this channel
///
/// **Important**: This disables the channel!
pub fn select_trigger(&mut self, trigger: Ch1Trigger) -> Result<(), Error> {
unwrap!(self.disable_channel());
T::regs().cr().modify(|reg| {
reg.set_tsel1(trigger.tsel());
});
Ok(())
}
/// Write `data` to the DAC CH1 via DMA.
///
/// To prevent delays/glitches when outputting a periodic waveform, the `circular` flag can be set.
/// This will configure a circular DMA transfer that periodically outputs the `data`.
/// Note that for performance reasons in circular mode the transfer complete interrupt is disabled.
///
/// **Important:** Channel 1 has to be configured for the DAC instance!
#[cfg(all(bdma, not(dma)))] // It currently only works with BDMA-only chips (DMA should theoretically work though)
pub async fn write(&mut self, data: ValueArray<'_>, circular: bool) -> Result<(), Error>
where
Tx: DmaCh1<T>,
{
let channel = Channel::Ch1.index();
debug!("Writing to channel {}", channel);
// Enable DAC and DMA
T::regs().cr().modify(|w| {
w.set_en(channel, true);
w.set_dmaen(channel, true);
});
let tx_request = self.dma.request();
let dma_channel = &self.dma;
let tx_options = crate::dma::TransferOptions {
circular,
half_transfer_ir: false,
complete_transfer_ir: !circular,
..Default::default()
};
// Initiate the correct type of DMA transfer depending on what data is passed
let tx_f = match data {
ValueArray::Bit8(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr8r(channel).as_ptr() as *mut u8,
tx_options,
)
},
ValueArray::Bit12Left(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12l(channel).as_ptr() as *mut u16,
tx_options,
)
},
ValueArray::Bit12Right(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12r(channel).as_ptr() as *mut u16,
tx_options,
)
},
};
tx_f.await;
// finish dma
// TODO: Do we need to check any status registers here?
T::regs().cr().modify(|w| {
// Disable the DAC peripheral
w.set_en(channel, false);
// Disable the DMA. TODO: Is this necessary?
w.set_dmaen(channel, false);
});
Ok(())
}
}
impl<'d, T: Instance, Tx> DacCh2<'d, T, Tx> {
/// Obtain DAC CH2
pub fn new(
_peri: impl Peripheral<P = T> + 'd,
dma: impl Peripheral<P = Tx> + 'd,
_pin: impl Peripheral<P = impl DacPin<T, 2>> + 'd,
) -> Self {
into_ref!(_peri, dma);
T::enable();
T::reset();
let mut dac = Self {
phantom: PhantomData,
dma,
};
// Configure each activated channel. All results can be `unwrap`ed since they
// will only error if the channel is not configured (i.e. ch1, ch2 are false)
#[cfg(dac_v2)]
dac.set_channel_mode(0).unwrap();
dac.enable_channel().unwrap();
dac.set_trigger_enable(true).unwrap();
dac
}
/// Select a new trigger for this channel
pub fn select_trigger(&mut self, trigger: Ch2Trigger) -> Result<(), Error> {
unwrap!(self.disable_channel());
T::regs().cr().modify(|reg| {
reg.set_tsel2(trigger.tsel());
});
Ok(())
}
/// Write `data` to the DAC CH2 via DMA.
///
/// To prevent delays/glitches when outputting a periodic waveform, the `circular` flag can be set.
/// This will configure a circular DMA transfer that periodically outputs the `data`.
/// Note that for performance reasons in circular mode the transfer complete interrupt is disabled.
///
/// **Important:** Channel 2 has to be configured for the DAC instance!
#[cfg(all(bdma, not(dma)))] // It currently only works with BDMA-only chips (DMA should theoretically work though)
pub async fn write(&mut self, data: ValueArray<'_>, circular: bool) -> Result<(), Error>
where
Tx: DmaCh2<T>,
{
let channel = Channel::Ch2.index();
debug!("Writing to channel {}", channel);
// Enable DAC and DMA
T::regs().cr().modify(|w| {
w.set_en(channel, true);
w.set_dmaen(channel, true);
});
let tx_request = self.dma.request();
let dma_channel = &self.dma;
let tx_options = crate::dma::TransferOptions {
circular,
half_transfer_ir: false,
complete_transfer_ir: !circular,
..Default::default()
};
// Initiate the correct type of DMA transfer depending on what data is passed
let tx_f = match data {
ValueArray::Bit8(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr8r(channel).as_ptr() as *mut u8,
tx_options,
)
},
ValueArray::Bit12Left(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12l(channel).as_ptr() as *mut u16,
tx_options,
)
},
ValueArray::Bit12Right(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12r(channel).as_ptr() as *mut u16,
tx_options,
)
},
};
tx_f.await;
// finish dma
// TODO: Do we need to check any status registers here?
T::regs().cr().modify(|w| {
// Disable the DAC peripheral
w.set_en(channel, false);
// Disable the DMA. TODO: Is this necessary?
w.set_dmaen(channel, false);
});
Ok(())
}
}
impl<'d, T: Instance, TxCh1, TxCh2> Dac<'d, T, TxCh1, TxCh2> {
/// Create a new DAC instance with both channels.
///
/// This is used to obtain two independent channels via `split()` for use e.g. with DMA.
pub fn new(
peri: impl Peripheral<P = T> + 'd,
dma_ch1: impl Peripheral<P = TxCh1> + 'd,
dma_ch2: impl Peripheral<P = TxCh2> + 'd,
_pin_ch1: impl Peripheral<P = impl DacPin<T, 1>> + 'd,
_pin_ch2: impl Peripheral<P = impl DacPin<T, 2>> + 'd,
) -> Self {
into_ref!(peri, dma_ch1, dma_ch2);
T::enable();
T::reset();
let mut dac_ch1 = DacCh1 {
_peri: peri,
dma: dma_ch1,
};
let mut dac_ch2 = DacCh2 {
phantom: PhantomData,
dma: dma_ch2,
};
// Configure each activated channel. All results can be `unwrap`ed since they
// will only error if the channel is not configured (i.e. ch1, ch2 are false)
#[cfg(dac_v2)]
dac_ch1.set_channel_mode(0).unwrap();
dac_ch1.enable_channel().unwrap();
dac_ch1.set_trigger_enable(true).unwrap();
#[cfg(dac_v2)]
dac_ch2.set_channel_mode(0).unwrap();
dac_ch2.enable_channel().unwrap();
dac_ch2.set_trigger_enable(true).unwrap();
Self {
ch1: dac_ch1,
ch2: dac_ch2,
}
}
/// Split the DAC into CH1 and CH2 for independent use.
pub fn split(self) -> (DacCh1<'d, T, TxCh1>, DacCh2<'d, T, TxCh2>) {
(self.ch1, self.ch2)
}
/// Get mutable reference to CH1
pub fn ch1_mut(&mut self) -> &mut DacCh1<'d, T, TxCh1> {
&mut self.ch1
}
/// Get mutable reference to CH2
pub fn ch2_mut(&mut self) -> &mut DacCh2<'d, T, TxCh2> {
&mut self.ch2
}
/// Get reference to CH1
pub fn ch1(&mut self) -> &DacCh1<'d, T, TxCh1> {
&self.ch1
}
/// Get reference to CH2
pub fn ch2(&mut self) -> &DacCh2<'d, T, TxCh2> {
&self.ch2
}
}
impl<'d, T: Instance, Tx> DacChannel<T, Tx> for DacCh1<'d, T, Tx> {
const CHANNEL: Channel = Channel::Ch1;
}
impl<'d, T: Instance, Tx> DacChannel<T, Tx> for DacCh2<'d, T, Tx> {
const CHANNEL: Channel = Channel::Ch2;
}
pub(crate) mod sealed {
pub trait Instance {
fn regs() -> &'static crate::pac::dac::Dac;
}
}
pub trait Instance: sealed::Instance + RccPeripheral + 'static {}
dma_trait!(DmaCh1, Instance);
dma_trait!(DmaCh2, Instance);
/// Marks a pin that can be used with the DAC
pub trait DacPin<T: Instance, const C: u8>: crate::gpio::Pin + 'static {}
foreach_peripheral!(
(dac, $inst:ident) => {
// H7 uses single bit for both DAC1 and DAC2, this is a hack until a proper fix is implemented
#[cfg(rcc_h7)]
impl crate::rcc::sealed::RccPeripheral for peripherals::$inst {
fn frequency() -> crate::time::Hertz {
critical_section::with(|_| unsafe { crate::rcc::get_freqs().apb1 })
}
fn reset() {
critical_section::with(|_| {
crate::pac::RCC.apb1lrstr().modify(|w| w.set_dac12rst(true));
crate::pac::RCC.apb1lrstr().modify(|w| w.set_dac12rst(false));
})
}
fn enable() {
critical_section::with(|_| {
crate::pac::RCC.apb1lenr().modify(|w| w.set_dac12en(true));
})
}
fn disable() {
critical_section::with(|_| {
crate::pac::RCC.apb1lenr().modify(|w| w.set_dac12en(false))
})
}
}
#[cfg(rcc_h7)]
impl crate::rcc::RccPeripheral for peripherals::$inst {}
impl crate::dac::sealed::Instance for peripherals::$inst {
fn regs() -> &'static crate::pac::dac::Dac {
&crate::pac::$inst
}
}
impl crate::dac::Instance for peripherals::$inst {}
};
);
macro_rules! impl_dac_pin {
($inst:ident, $pin:ident, $ch:expr) => {
impl crate::dac::DacPin<peripherals::$inst, $ch> for crate::peripherals::$pin {}
};
}

View file

@ -21,11 +21,22 @@ use crate::pac::bdma::{regs, vals};
#[derive(Debug, Copy, Clone, PartialEq, Eq)] #[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))] #[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive] #[non_exhaustive]
pub struct TransferOptions {} pub struct TransferOptions {
/// Enable circular DMA
pub circular: bool,
/// Enable half transfer interrupt
pub half_transfer_ir: bool,
/// Enable transfer complete interrupt
pub complete_transfer_ir: bool,
}
impl Default for TransferOptions { impl Default for TransferOptions {
fn default() -> Self { fn default() -> Self {
Self {} Self {
circular: false,
half_transfer_ir: false,
complete_transfer_ir: true,
}
} }
} }
@ -253,7 +264,7 @@ impl<'a, C: Channel> Transfer<'a, C> {
mem_len: usize, mem_len: usize,
incr_mem: bool, incr_mem: bool,
data_size: WordSize, data_size: WordSize,
_options: TransferOptions, options: TransferOptions,
) -> Self { ) -> Self {
let ch = channel.regs().ch(channel.num()); let ch = channel.regs().ch(channel.num());
@ -283,7 +294,15 @@ impl<'a, C: Channel> Transfer<'a, C> {
} }
w.set_dir(dir.into()); w.set_dir(dir.into());
w.set_teie(true); w.set_teie(true);
w.set_tcie(true); w.set_tcie(options.complete_transfer_ir);
w.set_htie(options.half_transfer_ir);
if options.circular {
w.set_circ(vals::Circ::ENABLED);
debug!("Setting circular mode");
} else {
w.set_circ(vals::Circ::DISABLED);
}
w.set_pl(vals::Pl::VERYHIGH);
w.set_en(true); w.set_en(true);
}); });
@ -310,8 +329,9 @@ impl<'a, C: Channel> Transfer<'a, C> {
pub fn is_running(&mut self) -> bool { pub fn is_running(&mut self) -> bool {
let ch = self.channel.regs().ch(self.channel.num()); let ch = self.channel.regs().ch(self.channel.num());
let en = ch.cr().read().en(); let en = ch.cr().read().en();
let circular = ch.cr().read().circ() == vals::Circ::ENABLED;
let tcif = STATE.complete_count[self.channel.index()].load(Ordering::Acquire) != 0; let tcif = STATE.complete_count[self.channel.index()].load(Ordering::Acquire) != 0;
en && !tcif en && (circular || !tcif)
} }
/// Gets the total remaining transfers for the channel /// Gets the total remaining transfers for the channel
@ -477,6 +497,8 @@ impl<'a, C: Channel, W: Word> RingBuffer<'a, C, W> {
let ch = self.channel.regs().ch(self.channel.num()); let ch = self.channel.regs().ch(self.channel.num());
// Disable the channel. Keep the IEs enabled so the irqs still fire. // Disable the channel. Keep the IEs enabled so the irqs still fire.
// If the channel is enabled and transfer is not completed, we need to perform
// two separate write access to the CR register to disable the channel.
ch.cr().write(|w| { ch.cr().write(|w| {
w.set_teie(true); w.set_teie(true);
w.set_htie(true); w.set_htie(true);

View file

@ -227,7 +227,11 @@ const DMA_TRANSFER_OPTIONS: crate::dma::TransferOptions = crate::dma::TransferOp
fifo_threshold: Some(crate::dma::FifoThreshold::Full), fifo_threshold: Some(crate::dma::FifoThreshold::Full),
}; };
#[cfg(all(sdmmc_v1, not(dma)))] #[cfg(all(sdmmc_v1, not(dma)))]
const DMA_TRANSFER_OPTIONS: crate::dma::TransferOptions = crate::dma::TransferOptions {}; const DMA_TRANSFER_OPTIONS: crate::dma::TransferOptions = crate::dma::TransferOptions {
circular: false,
half_transfer_ir: false,
complete_transfer_ir: true,
};
/// SDMMC configuration /// SDMMC configuration
/// ///

View file

@ -4,7 +4,8 @@
use defmt::*; use defmt::*;
use embassy_executor::Spawner; use embassy_executor::Spawner;
use embassy_stm32::dac::{Channel, Dac, Value}; use embassy_stm32::dac::{DacCh1, DacChannel, Value};
use embassy_stm32::dma::NoDma;
use {defmt_rtt as _, panic_probe as _}; use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main] #[embassy_executor::main]
@ -12,12 +13,12 @@ async fn main(_spawner: Spawner) -> ! {
let p = embassy_stm32::init(Default::default()); let p = embassy_stm32::init(Default::default());
info!("Hello World, dude!"); info!("Hello World, dude!");
let mut dac = Dac::new_1ch(p.DAC, p.PA4); let mut dac = DacCh1::new(p.DAC, NoDma, p.PA4);
loop { loop {
for v in 0..=255 { for v in 0..=255 {
unwrap!(dac.set(Channel::Ch1, Value::Bit8(to_sine_wave(v)))); unwrap!(dac.set(Value::Bit8(to_sine_wave(v))));
unwrap!(dac.trigger(Channel::Ch1)); dac.trigger();
} }
} }
} }

View file

@ -4,7 +4,8 @@
use cortex_m_rt::entry; use cortex_m_rt::entry;
use defmt::*; use defmt::*;
use embassy_stm32::dac::{Channel, Dac, Value}; use embassy_stm32::dac::{DacCh1, DacChannel, Value};
use embassy_stm32::dma::NoDma;
use embassy_stm32::time::mhz; use embassy_stm32::time::mhz;
use embassy_stm32::Config; use embassy_stm32::Config;
use {defmt_rtt as _, panic_probe as _}; use {defmt_rtt as _, panic_probe as _};
@ -19,12 +20,12 @@ fn main() -> ! {
config.rcc.pll1.q_ck = Some(mhz(100)); config.rcc.pll1.q_ck = Some(mhz(100));
let p = embassy_stm32::init(config); let p = embassy_stm32::init(config);
let mut dac = Dac::new_1ch(p.DAC1, p.PA4); let mut dac = DacCh1::new(p.DAC1, NoDma, p.PA4);
loop { loop {
for v in 0..=255 { for v in 0..=255 {
unwrap!(dac.set(Channel::Ch1, Value::Bit8(to_sine_wave(v)))); unwrap!(dac.set(Value::Bit8(to_sine_wave(v))));
unwrap!(dac.trigger(Channel::Ch1)); dac.trigger();
} }
} }
} }

View file

@ -3,26 +3,21 @@
#![feature(type_alias_impl_trait)] #![feature(type_alias_impl_trait)]
use defmt::*; use defmt::*;
use embassy_stm32::dac::{Channel, Dac, Value}; use embassy_stm32::dac::{DacCh1, DacChannel, Value};
use embassy_stm32::pac; use embassy_stm32::dma::NoDma;
use {defmt_rtt as _, panic_probe as _}; use {defmt_rtt as _, panic_probe as _};
#[cortex_m_rt::entry] #[cortex_m_rt::entry]
fn main() -> ! { fn main() -> ! {
let p = embassy_stm32::init(Default::default());
info!("Hello World!"); info!("Hello World!");
pac::RCC.apb1enr1().modify(|w| { let mut dac = DacCh1::new(p.DAC1, NoDma, p.PA4);
w.set_dac1en(true);
});
let p = embassy_stm32::init(Default::default());
let mut dac = Dac::new_1ch(p.DAC1, p.PA4);
loop { loop {
for v in 0..=255 { for v in 0..=255 {
unwrap!(dac.set(Channel::Ch1, Value::Bit8(to_sine_wave(v)))); unwrap!(dac.set(Value::Bit8(to_sine_wave(v))));
unwrap!(dac.trigger(Channel::Ch1)); dac.trigger();
} }
} }
} }

View file

@ -0,0 +1,137 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::dac::{DacChannel, ValueArray};
use embassy_stm32::pac::timer::vals::{Mms, Opm};
use embassy_stm32::peripherals::{TIM6, TIM7};
use embassy_stm32::rcc::low_level::RccPeripheral;
use embassy_stm32::time::Hertz;
use embassy_stm32::timer::low_level::Basic16bitInstance;
use micromath::F32Ext;
use {defmt_rtt as _, panic_probe as _};
pub type Dac1Type =
embassy_stm32::dac::DacCh1<'static, embassy_stm32::peripherals::DAC1, embassy_stm32::peripherals::DMA1_CH3>;
pub type Dac2Type =
embassy_stm32::dac::DacCh2<'static, embassy_stm32::peripherals::DAC1, embassy_stm32::peripherals::DMA1_CH4>;
#[embassy_executor::main]
async fn main(spawner: Spawner) {
let config = embassy_stm32::Config::default();
// Initialize the board and obtain a Peripherals instance
let p: embassy_stm32::Peripherals = embassy_stm32::init(config);
// Obtain two independent channels (p.DAC1 can only be consumed once, though!)
let (dac_ch1, dac_ch2) = embassy_stm32::dac::Dac::new(p.DAC1, p.DMA1_CH3, p.DMA1_CH4, p.PA4, p.PA5).split();
spawner.spawn(dac_task1(dac_ch1)).ok();
spawner.spawn(dac_task2(dac_ch2)).ok();
}
#[embassy_executor::task]
async fn dac_task1(mut dac: Dac1Type) {
let data: &[u8; 256] = &calculate_array::<256>();
info!("TIM6 frequency is {}", TIM6::frequency());
const FREQUENCY: Hertz = Hertz::hz(200);
// Compute the reload value such that we obtain the FREQUENCY for the sine
let reload: u32 = (TIM6::frequency().0 / FREQUENCY.0) / data.len() as u32;
// Depends on your clock and on the specific chip used, you may need higher or lower values here
if reload < 10 {
error!("Reload value {} below threshold!", reload);
}
dac.select_trigger(embassy_stm32::dac::Ch1Trigger::Tim6).unwrap();
dac.enable_channel().unwrap();
TIM6::enable();
TIM6::regs().arr().modify(|w| w.set_arr(reload as u16 - 1));
TIM6::regs().cr2().modify(|w| w.set_mms(Mms::UPDATE));
TIM6::regs().cr1().modify(|w| {
w.set_opm(Opm::DISABLED);
w.set_cen(true);
});
debug!(
"TIM6 Frequency {}, Target Frequency {}, Reload {}, Reload as u16 {}, Samples {}",
TIM6::frequency(),
FREQUENCY,
reload,
reload as u16,
data.len()
);
// Loop technically not necessary if DMA circular mode is enabled
loop {
info!("Loop DAC1");
if let Err(e) = dac.write(ValueArray::Bit8(data), true).await {
error!("Could not write to dac: {}", e);
}
}
}
#[embassy_executor::task]
async fn dac_task2(mut dac: Dac2Type) {
let data: &[u8; 256] = &calculate_array::<256>();
info!("TIM7 frequency is {}", TIM7::frequency());
const FREQUENCY: Hertz = Hertz::hz(600);
let reload: u32 = (TIM7::frequency().0 / FREQUENCY.0) / data.len() as u32;
if reload < 10 {
error!("Reload value {} below threshold!", reload);
}
TIM7::enable();
TIM7::regs().arr().modify(|w| w.set_arr(reload as u16 - 1));
TIM7::regs().cr2().modify(|w| w.set_mms(Mms::UPDATE));
TIM7::regs().cr1().modify(|w| {
w.set_opm(Opm::DISABLED);
w.set_cen(true);
});
dac.select_trigger(embassy_stm32::dac::Ch2Trigger::Tim7).unwrap();
debug!(
"TIM7 Frequency {}, Target Frequency {}, Reload {}, Reload as u16 {}, Samples {}",
TIM7::frequency(),
FREQUENCY,
reload,
reload as u16,
data.len()
);
if let Err(e) = dac.write(ValueArray::Bit8(data), true).await {
error!("Could not write to dac: {}", e);
}
}
fn to_sine_wave(v: u8) -> u8 {
if v >= 128 {
// top half
let r = 3.14 * ((v - 128) as f32 / 128.0);
(r.sin() * 128.0 + 127.0) as u8
} else {
// bottom half
let r = 3.14 + 3.14 * (v as f32 / 128.0);
(r.sin() * 128.0 + 127.0) as u8
}
}
fn calculate_array<const N: usize>() -> [u8; N] {
let mut res = [0; N];
let mut i = 0;
while i < N {
res[i] = to_sine_wave(i as u8);
i += 1;
}
res
}