nrf/rng: expose all functionality as inherent methods.

This commit is contained in:
Dario Nieuwenhuis 2022-01-13 23:10:24 +01:00
parent df00c83984
commit 6eec3d8acc
2 changed files with 61 additions and 76 deletions

View file

@ -1,5 +1,3 @@
use core::convert::Infallible;
use core::future::Future;
use core::marker::PhantomData;
use core::ptr;
use core::sync::atomic::AtomicPtr;
@ -7,13 +5,11 @@ use core::sync::atomic::Ordering;
use core::task::Poll;
use embassy::interrupt::InterruptExt;
use embassy::traits;
use embassy::util::Unborrow;
use embassy::waitqueue::AtomicWaker;
use embassy_hal_common::drop::OnDrop;
use embassy_hal_common::unborrow;
use futures::future::poll_fn;
use rand_core::RngCore;
use crate::interrupt;
use crate::pac;
@ -39,7 +35,7 @@ struct State {
/// A wrapper around an nRF RNG peripheral.
///
/// It has a non-blocking API, through `embassy::traits::Rng`, and a blocking api through `rand`.
/// It has a non-blocking API, and a blocking api through `rand`.
pub struct Rng<'d> {
irq: interrupt::RNG,
phantom: PhantomData<(&'d mut RNG, &'d mut interrupt::RNG)>,
@ -146,72 +142,51 @@ impl<'d> Rng<'d> {
pub fn bias_correction(&self, enable: bool) {
RNG::regs().config.write(|w| w.dercen().bit(enable))
}
}
impl<'d> Drop for Rng<'d> {
fn drop(&mut self) {
self.irq.disable()
}
}
impl<'d> traits::rng::Rng for Rng<'d> {
type Error = Infallible;
type RngFuture<'a>
where
'd: 'a,
= impl Future<Output = Result<(), Self::Error>> + 'a;
fn fill_bytes<'a>(&'a mut self, dest: &'a mut [u8]) -> Self::RngFuture<'a> {
async move {
if dest.len() == 0 {
return Ok(()); // Nothing to fill
}
let range = dest.as_mut_ptr_range();
// Even if we've preempted the interrupt, it can't preempt us again,
// so we don't need to worry about the order we write these in.
STATE.ptr.store(range.start, Ordering::Relaxed);
STATE.end.store(range.end, Ordering::Relaxed);
self.enable_irq();
self.start();
let on_drop = OnDrop::new(|| {
self.stop();
self.disable_irq();
// The interrupt is now disabled and can't preempt us anymore, so the order doesn't matter here.
STATE.ptr.store(ptr::null_mut(), Ordering::Relaxed);
STATE.end.store(ptr::null_mut(), Ordering::Relaxed);
});
poll_fn(|cx| {
STATE.waker.register(cx.waker());
// The interrupt will never modify `end`, so load it first and then get the most up-to-date `ptr`.
let end = STATE.end.load(Ordering::Relaxed);
let ptr = STATE.ptr.load(Ordering::Relaxed);
if ptr == end {
// We're done.
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
// Trigger the teardown
drop(on_drop);
Ok(())
pub async fn fill_bytes(&mut self, dest: &mut [u8]) {
if dest.len() == 0 {
return; // Nothing to fill
}
}
}
impl<'d> RngCore for Rng<'d> {
fn fill_bytes(&mut self, dest: &mut [u8]) {
let range = dest.as_mut_ptr_range();
// Even if we've preempted the interrupt, it can't preempt us again,
// so we don't need to worry about the order we write these in.
STATE.ptr.store(range.start, Ordering::Relaxed);
STATE.end.store(range.end, Ordering::Relaxed);
self.enable_irq();
self.start();
let on_drop = OnDrop::new(|| {
self.stop();
self.disable_irq();
// The interrupt is now disabled and can't preempt us anymore, so the order doesn't matter here.
STATE.ptr.store(ptr::null_mut(), Ordering::Relaxed);
STATE.end.store(ptr::null_mut(), Ordering::Relaxed);
});
poll_fn(|cx| {
STATE.waker.register(cx.waker());
// The interrupt will never modify `end`, so load it first and then get the most up-to-date `ptr`.
let end = STATE.end.load(Ordering::Relaxed);
let ptr = STATE.ptr.load(Ordering::Relaxed);
if ptr == end {
// We're done.
Poll::Ready(())
} else {
Poll::Pending
}
})
.await;
// Trigger the teardown
drop(on_drop);
}
pub fn blocking_fill_bytes(&mut self, dest: &mut [u8]) {
self.start();
for byte in dest.iter_mut() {
@ -223,24 +198,36 @@ impl<'d> RngCore for Rng<'d> {
self.stop();
}
}
impl<'d> Drop for Rng<'d> {
fn drop(&mut self) {
self.irq.disable()
}
}
impl<'d> rand_core::RngCore for Rng<'d> {
fn fill_bytes(&mut self, dest: &mut [u8]) {
self.blocking_fill_bytes(dest);
}
fn next_u32(&mut self) -> u32 {
let mut bytes = [0; 4];
self.fill_bytes(&mut bytes);
self.blocking_fill_bytes(&mut bytes);
// We don't care about the endianness, so just use the native one.
u32::from_ne_bytes(bytes)
}
fn next_u64(&mut self) -> u64 {
let mut bytes = [0; 8];
self.fill_bytes(&mut bytes);
self.blocking_fill_bytes(&mut bytes);
u64::from_ne_bytes(bytes)
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> {
self.fill_bytes(dest);
self.blocking_fill_bytes(dest);
Ok(())
}
}
// TODO: Should `Rng` implement `CryptoRng`? It's 'suitable for cryptographic purposes' according to the specification.
impl<'d> rand_core::CryptoRng for Rng<'d> {}

View file

@ -5,9 +5,7 @@
#[path = "../example_common.rs"]
mod example_common;
use defmt::unwrap;
use embassy::executor::Spawner;
use embassy::traits::rng::Rng as _;
use embassy_nrf::interrupt;
use embassy_nrf::rng::Rng;
use embassy_nrf::Peripherals;
@ -19,14 +17,14 @@ async fn main(_spawner: Spawner, p: Peripherals) {
// Async API
let mut bytes = [0; 4];
unwrap!(rng.fill_bytes(&mut bytes).await); // nRF RNG is infallible
rng.fill_bytes(&mut bytes).await;
defmt::info!("Some random bytes: {:?}", bytes);
// Sync API with `rand`
defmt::info!("A random number from 1 to 10: {:?}", rng.gen_range(1..=10));
let mut bytes = [0; 1024];
unwrap!(rng.fill_bytes(&mut bytes).await);
rng.fill_bytes(&mut bytes).await;
let zero_count: u32 = bytes.iter().fold(0, |acc, val| acc + val.count_zeros());
let one_count: u32 = bytes.iter().fold(0, |acc, val| acc + val.count_ones());
defmt::info!(