Merge pull request #2321 from embassy-rs/stm32-docs

stm32: document hrtim, qspi, sdmmc, spi.
This commit is contained in:
Dario Nieuwenhuis 2023-12-19 15:29:26 +00:00 committed by GitHub
commit 71584409d9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 132 additions and 58 deletions

View file

@ -15,38 +15,42 @@ use crate::rcc::get_freqs;
use crate::time::Hertz;
use crate::Peripheral;
pub enum Source {
Master,
ChA,
ChB,
ChC,
ChD,
ChE,
#[cfg(hrtim_v2)]
ChF,
}
/// HRTIM burst controller instance.
pub struct BurstController<T: Instance> {
phantom: PhantomData<T>,
}
/// HRTIM master instance.
pub struct Master<T: Instance> {
phantom: PhantomData<T>,
}
/// HRTIM channel A instance.
pub struct ChA<T: Instance> {
phantom: PhantomData<T>,
}
/// HRTIM channel B instance.
pub struct ChB<T: Instance> {
phantom: PhantomData<T>,
}
/// HRTIM channel C instance.
pub struct ChC<T: Instance> {
phantom: PhantomData<T>,
}
/// HRTIM channel D instance.
pub struct ChD<T: Instance> {
phantom: PhantomData<T>,
}
/// HRTIM channel E instance.
pub struct ChE<T: Instance> {
phantom: PhantomData<T>,
}
/// HRTIM channel F instance.
#[cfg(hrtim_v2)]
pub struct ChF<T: Instance> {
phantom: PhantomData<T>,
@ -60,13 +64,16 @@ mod sealed {
}
}
/// Advanced channel instance trait.
pub trait AdvancedChannel<T: Instance>: sealed::AdvancedChannel<T> {}
/// HRTIM PWM pin.
pub struct PwmPin<'d, Perip, Channel> {
_pin: PeripheralRef<'d, AnyPin>,
phantom: PhantomData<(Perip, Channel)>,
}
/// HRTIM complementary PWM pin.
pub struct ComplementaryPwmPin<'d, Perip, Channel> {
_pin: PeripheralRef<'d, AnyPin>,
phantom: PhantomData<(Perip, Channel)>,
@ -75,6 +82,7 @@ pub struct ComplementaryPwmPin<'d, Perip, Channel> {
macro_rules! advanced_channel_impl {
($new_chx:ident, $channel:tt, $ch_num:expr, $pin_trait:ident, $complementary_pin_trait:ident) => {
impl<'d, Perip: Instance> PwmPin<'d, Perip, $channel<Perip>> {
#[doc = concat!("Create a new ", stringify!($channel), " PWM pin instance.")]
pub fn $new_chx(pin: impl Peripheral<P = impl $pin_trait<Perip>> + 'd) -> Self {
into_ref!(pin);
critical_section::with(|_| {
@ -91,6 +99,7 @@ macro_rules! advanced_channel_impl {
}
impl<'d, Perip: Instance> ComplementaryPwmPin<'d, Perip, $channel<Perip>> {
#[doc = concat!("Create a new ", stringify!($channel), " complementary PWM pin instance.")]
pub fn $new_chx(pin: impl Peripheral<P = impl $complementary_pin_trait<Perip>> + 'd) -> Self {
into_ref!(pin);
critical_section::with(|_| {
@ -126,18 +135,29 @@ advanced_channel_impl!(new_chf, ChF, 5, ChannelFPin, ChannelFComplementaryPin);
/// Struct used to divide a high resolution timer into multiple channels
pub struct AdvancedPwm<'d, T: Instance> {
_inner: PeripheralRef<'d, T>,
/// Master instance.
pub master: Master<T>,
/// Burst controller.
pub burst_controller: BurstController<T>,
/// Channel A.
pub ch_a: ChA<T>,
/// Channel B.
pub ch_b: ChB<T>,
/// Channel C.
pub ch_c: ChC<T>,
/// Channel D.
pub ch_d: ChD<T>,
/// Channel E.
pub ch_e: ChE<T>,
/// Channel F.
#[cfg(hrtim_v2)]
pub ch_f: ChF<T>,
}
impl<'d, T: Instance> AdvancedPwm<'d, T> {
/// Create a new HRTIM driver.
///
/// This splits the HRTIM into its constituent parts, which you can then use individually.
pub fn new(
tim: impl Peripheral<P = T> + 'd,
_cha: Option<PwmPin<'d, T, ChA<T>>>,
@ -200,13 +220,7 @@ impl<'d, T: Instance> AdvancedPwm<'d, T> {
}
}
impl<T: Instance> BurstController<T> {
pub fn set_source(&mut self, _source: Source) {
todo!("burst mode control registers not implemented")
}
}
/// Represents a fixed-frequency bridge converter
/// Fixed-frequency bridge converter driver.
///
/// Our implementation of the bridge converter uses a single channel and three compare registers,
/// allowing implementation of a synchronous buck or boost converter in continuous or discontinuous
@ -225,6 +239,7 @@ pub struct BridgeConverter<T: Instance, C: AdvancedChannel<T>> {
}
impl<T: Instance, C: AdvancedChannel<T>> BridgeConverter<T, C> {
/// Create a new HRTIM bridge converter driver.
pub fn new(_channel: C, frequency: Hertz) -> Self {
use crate::pac::hrtim::vals::{Activeeffect, Inactiveeffect};
@ -281,14 +296,17 @@ impl<T: Instance, C: AdvancedChannel<T>> BridgeConverter<T, C> {
}
}
/// Start HRTIM.
pub fn start(&mut self) {
T::regs().mcr().modify(|w| w.set_tcen(C::raw(), true));
}
/// Stop HRTIM.
pub fn stop(&mut self) {
T::regs().mcr().modify(|w| w.set_tcen(C::raw(), false));
}
/// Enable burst mode.
pub fn enable_burst_mode(&mut self) {
T::regs().tim(C::raw()).outr().modify(|w| {
// Enable Burst Mode
@ -301,6 +319,7 @@ impl<T: Instance, C: AdvancedChannel<T>> BridgeConverter<T, C> {
})
}
/// Disable burst mode.
pub fn disable_burst_mode(&mut self) {
T::regs().tim(C::raw()).outr().modify(|w| {
// Disable Burst Mode
@ -357,7 +376,7 @@ impl<T: Instance, C: AdvancedChannel<T>> BridgeConverter<T, C> {
}
}
/// Represents a variable-frequency resonant converter
/// Variable-frequency resonant converter driver.
///
/// This implementation of a resonsant converter is appropriate for a half or full bridge,
/// but does not include secondary rectification, which is appropriate for applications
@ -370,6 +389,7 @@ pub struct ResonantConverter<T: Instance, C: AdvancedChannel<T>> {
}
impl<T: Instance, C: AdvancedChannel<T>> ResonantConverter<T, C> {
/// Create a new variable-frequency resonant converter driver.
pub fn new(_channel: C, min_frequency: Hertz, max_frequency: Hertz) -> Self {
T::set_channel_frequency(C::raw(), min_frequency);
@ -408,6 +428,7 @@ impl<T: Instance, C: AdvancedChannel<T>> ResonantConverter<T, C> {
T::set_channel_dead_time(C::raw(), value);
}
/// Set the timer period.
pub fn set_period(&mut self, period: u16) {
assert!(period < self.max_period);
assert!(period > self.min_period);

View file

@ -125,7 +125,6 @@ pub(crate) mod sealed {
}
/// Set the dead time as a proportion of max_duty
fn set_channel_dead_time(channel: usize, dead_time: u16) {
let regs = Self::regs();
@ -148,13 +147,10 @@ pub(crate) mod sealed {
w.set_dtr(dt_val as u16);
});
}
// fn enable_outputs(enable: bool);
//
// fn enable_channel(&mut self, channel: usize, enable: bool);
}
}
/// HRTIM instance trait.
pub trait Instance: sealed::Instance + 'static {}
foreach_interrupt! {

View file

@ -149,33 +149,15 @@ use crate::interrupt::Priority;
pub use crate::pac::NVIC_PRIO_BITS;
use crate::rcc::sealed::RccPeripheral;
/// `embassy-stm32` global configuration.
#[non_exhaustive]
pub struct Config {
/// RCC config.
pub rcc: rcc::Config,
/// Enable debug during sleep.
///
/// May incrase power consumption. Defaults to true.
#[cfg(dbgmcu)]
pub enable_debug_during_sleep: bool,
/// BDMA interrupt priority.
///
/// Defaults to P0 (highest).
#[cfg(bdma)]
pub bdma_interrupt_priority: Priority,
/// DMA interrupt priority.
///
/// Defaults to P0 (highest).
#[cfg(dma)]
pub dma_interrupt_priority: Priority,
/// GPDMA interrupt priority.
///
/// Defaults to P0 (highest).
#[cfg(gpdma)]
pub gpdma_interrupt_priority: Priority,
}
@ -196,11 +178,7 @@ impl Default for Config {
}
}
/// Initialize the `embassy-stm32` HAL with the provided configuration.
///
/// This returns the peripheral singletons that can be used for creating drivers.
///
/// This should only be called once at startup, otherwise it panics.
/// Initialize embassy.
pub fn init(config: Config) -> Peripherals {
critical_section::with(|cs| {
let p = Peripherals::take_with_cs(cs);

View file

@ -1,3 +1,5 @@
//! Enums used in QSPI configuration.
#[allow(dead_code)]
#[derive(Copy, Clone)]
pub(crate) enum QspiMode {

View file

@ -14,6 +14,7 @@ use crate::pac::quadspi::Quadspi as Regs;
use crate::rcc::RccPeripheral;
use crate::{peripherals, Peripheral};
/// QSPI transfer configuration.
pub struct TransferConfig {
/// Instraction width (IMODE)
pub iwidth: QspiWidth,
@ -45,6 +46,7 @@ impl Default for TransferConfig {
}
}
/// QSPI driver configuration.
pub struct Config {
/// Flash memory size representend as 2^[0-32], as reasonable minimum 1KiB(9) was chosen.
/// If you need other value the whose predefined use `Other` variant.
@ -71,6 +73,7 @@ impl Default for Config {
}
}
/// QSPI driver.
#[allow(dead_code)]
pub struct Qspi<'d, T: Instance, Dma> {
_peri: PeripheralRef<'d, T>,
@ -85,6 +88,7 @@ pub struct Qspi<'d, T: Instance, Dma> {
}
impl<'d, T: Instance, Dma> Qspi<'d, T, Dma> {
/// Create a new QSPI driver for bank 1.
pub fn new_bk1(
peri: impl Peripheral<P = T> + 'd,
d0: impl Peripheral<P = impl BK1D0Pin<T>> + 'd,
@ -125,6 +129,7 @@ impl<'d, T: Instance, Dma> Qspi<'d, T, Dma> {
)
}
/// Create a new QSPI driver for bank 2.
pub fn new_bk2(
peri: impl Peripheral<P = T> + 'd,
d0: impl Peripheral<P = impl BK2D0Pin<T>> + 'd,
@ -223,6 +228,7 @@ impl<'d, T: Instance, Dma> Qspi<'d, T, Dma> {
}
}
/// Do a QSPI command.
pub fn command(&mut self, transaction: TransferConfig) {
#[cfg(not(stm32h7))]
T::REGS.cr().modify(|v| v.set_dmaen(false));
@ -232,6 +238,7 @@ impl<'d, T: Instance, Dma> Qspi<'d, T, Dma> {
T::REGS.fcr().modify(|v| v.set_ctcf(true));
}
/// Blocking read data.
pub fn blocking_read(&mut self, buf: &mut [u8], transaction: TransferConfig) {
#[cfg(not(stm32h7))]
T::REGS.cr().modify(|v| v.set_dmaen(false));
@ -256,6 +263,7 @@ impl<'d, T: Instance, Dma> Qspi<'d, T, Dma> {
T::REGS.fcr().modify(|v| v.set_ctcf(true));
}
/// Blocking write data.
pub fn blocking_write(&mut self, buf: &[u8], transaction: TransferConfig) {
// STM32H7 does not have dmaen
#[cfg(not(stm32h7))]
@ -278,6 +286,7 @@ impl<'d, T: Instance, Dma> Qspi<'d, T, Dma> {
T::REGS.fcr().modify(|v| v.set_ctcf(true));
}
/// Blocking read data, using DMA.
pub fn blocking_read_dma(&mut self, buf: &mut [u8], transaction: TransferConfig)
where
Dma: QuadDma<T>,
@ -310,6 +319,7 @@ impl<'d, T: Instance, Dma> Qspi<'d, T, Dma> {
transfer.blocking_wait();
}
/// Blocking write data, using DMA.
pub fn blocking_write_dma(&mut self, buf: &[u8], transaction: TransferConfig)
where
Dma: QuadDma<T>,
@ -379,6 +389,7 @@ pub(crate) mod sealed {
}
}
/// QSPI instance trait.
pub trait Instance: Peripheral<P = Self> + sealed::Instance + RccPeripheral {}
pin_trait!(SckPin, Instance);

View file

@ -54,6 +54,7 @@ const SD_INIT_FREQ: Hertz = Hertz(400_000);
/// The signalling scheme used on the SDMMC bus
#[non_exhaustive]
#[allow(missing_docs)]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Signalling {
@ -70,6 +71,9 @@ impl Default for Signalling {
}
}
/// Aligned data block for SDMMC transfers.
///
/// This is a 512-byte array, aligned to 4 bytes to satisfy DMA requirements.
#[repr(align(4))]
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
@ -94,17 +98,23 @@ impl DerefMut for DataBlock {
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// Timeout reported by the hardware
Timeout,
/// Timeout reported by the software driver.
SoftwareTimeout,
/// Unsupported card version.
UnsupportedCardVersion,
/// Unsupported card type.
UnsupportedCardType,
/// CRC error.
Crc,
DataCrcFail,
RxOverFlow,
/// No card inserted.
NoCard,
/// Bad clock supplied to the SDMMC peripheral.
BadClock,
/// Signaling switch failed.
SignalingSwitchFailed,
PeripheralBusy,
/// ST bit error.
#[cfg(sdmmc_v1)]
StBitErr,
}
@ -363,6 +373,7 @@ impl<'d, T: Instance, Dma: SdmmcDma<T>> Sdmmc<'d, T, Dma> {
#[cfg(sdmmc_v2)]
impl<'d, T: Instance> Sdmmc<'d, T, NoDma> {
/// Create a new SDMMC driver, with 1 data lane.
pub fn new_1bit(
sdmmc: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
@ -396,6 +407,7 @@ impl<'d, T: Instance> Sdmmc<'d, T, NoDma> {
)
}
/// Create a new SDMMC driver, with 4 data lanes.
pub fn new_4bit(
sdmmc: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
@ -497,7 +509,7 @@ impl<'d, T: Instance, Dma: SdmmcDma<T> + 'd> Sdmmc<'d, T, Dma> {
}
/// Data transfer is in progress
#[inline(always)]
#[inline]
fn data_active() -> bool {
let regs = T::regs();
@ -509,7 +521,7 @@ impl<'d, T: Instance, Dma: SdmmcDma<T> + 'd> Sdmmc<'d, T, Dma> {
}
/// Coammand transfer is in progress
#[inline(always)]
#[inline]
fn cmd_active() -> bool {
let regs = T::regs();
@ -521,7 +533,7 @@ impl<'d, T: Instance, Dma: SdmmcDma<T> + 'd> Sdmmc<'d, T, Dma> {
}
/// Wait idle on CMDACT, RXACT and TXACT (v1) or DOSNACT and CPSMACT (v2)
#[inline(always)]
#[inline]
fn wait_idle() {
while Self::data_active() || Self::cmd_active() {}
}
@ -837,7 +849,7 @@ impl<'d, T: Instance, Dma: SdmmcDma<T> + 'd> Sdmmc<'d, T, Dma> {
}
/// Clear flags in interrupt clear register
#[inline(always)]
#[inline]
fn clear_interrupt_flags() {
let regs = T::regs();
regs.icr().write(|w| {
@ -1152,7 +1164,8 @@ impl<'d, T: Instance, Dma: SdmmcDma<T> + 'd> Sdmmc<'d, T, Dma> {
Ok(())
}
#[inline(always)]
/// Read a data block.
#[inline]
pub async fn read_block(&mut self, block_idx: u32, buffer: &mut DataBlock) -> Result<(), Error> {
let card_capacity = self.card()?.card_type;
@ -1204,6 +1217,7 @@ impl<'d, T: Instance, Dma: SdmmcDma<T> + 'd> Sdmmc<'d, T, Dma> {
res
}
/// Write a data block.
pub async fn write_block(&mut self, block_idx: u32, buffer: &DataBlock) -> Result<(), Error> {
let card = self.card.as_mut().ok_or(Error::NoCard)?;
@ -1283,7 +1297,7 @@ impl<'d, T: Instance, Dma: SdmmcDma<T> + 'd> Sdmmc<'d, T, Dma> {
///
/// Returns Error::NoCard if [`init_card`](#method.init_card)
/// has not previously succeeded
#[inline(always)]
#[inline]
pub fn card(&self) -> Result<&Card, Error> {
self.card.as_ref().ok_or(Error::NoCard)
}
@ -1419,7 +1433,9 @@ pub(crate) mod sealed {
pub trait Pins<T: Instance> {}
}
/// SDMMC instance trait.
pub trait Instance: sealed::Instance + RccPeripheral + 'static {}
pin_trait!(CkPin, Instance);
pin_trait!(CmdPin, Instance);
pin_trait!(D0Pin, Instance);
@ -1434,7 +1450,10 @@ pin_trait!(D7Pin, Instance);
#[cfg(sdmmc_v1)]
dma_trait!(SdmmcDma, Instance);
// SDMMCv2 uses internal DMA
/// DMA instance trait.
///
/// This is only implemented for `NoDma`, since SDMMCv2 has DMA built-in, instead of
/// using ST's system-wide DMA peripheral.
#[cfg(sdmmc_v2)]
pub trait SdmmcDma<T: Instance> {}
#[cfg(sdmmc_v2)]

View file

@ -16,27 +16,38 @@ use crate::rcc::RccPeripheral;
use crate::time::Hertz;
use crate::{peripherals, Peripheral};
/// SPI error.
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// Invalid framing.
Framing,
/// CRC error (only if hardware CRC checking is enabled).
Crc,
/// Mode fault
ModeFault,
/// Overrun.
Overrun,
}
// TODO move upwards in the tree
/// SPI bit order
#[derive(Copy, Clone)]
pub enum BitOrder {
/// Least significant bit first.
LsbFirst,
/// Most significant bit first.
MsbFirst,
}
/// SPI configuration.
#[non_exhaustive]
#[derive(Copy, Clone)]
pub struct Config {
/// SPI mode.
pub mode: Mode,
/// Bit order.
pub bit_order: BitOrder,
/// Clock frequency.
pub frequency: Hertz,
}
@ -73,6 +84,7 @@ impl Config {
}
}
/// SPI driver.
pub struct Spi<'d, T: Instance, Tx, Rx> {
_peri: PeripheralRef<'d, T>,
sck: Option<PeripheralRef<'d, AnyPin>>,
@ -84,6 +96,7 @@ pub struct Spi<'d, T: Instance, Tx, Rx> {
}
impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
/// Create a new SPI driver.
pub fn new(
peri: impl Peripheral<P = T> + 'd,
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
@ -118,6 +131,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
)
}
/// Create a new SPI driver, in RX-only mode (only MISO pin, no MOSI).
pub fn new_rxonly(
peri: impl Peripheral<P = T> + 'd,
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
@ -143,6 +157,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
)
}
/// Create a new SPI driver, in TX-only mode (only MOSI pin, no MISO).
pub fn new_txonly(
peri: impl Peripheral<P = T> + 'd,
sck: impl Peripheral<P = impl SckPin<T>> + 'd,
@ -168,6 +183,9 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
)
}
/// Create a new SPI driver, in TX-only mode, without SCK pin.
///
/// This can be useful for bit-banging non-SPI protocols.
pub fn new_txonly_nosck(
peri: impl Peripheral<P = T> + 'd,
mosi: impl Peripheral<P = impl MosiPin<T>> + 'd,
@ -355,6 +373,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
Ok(())
}
/// Get current SPI configuration.
pub fn get_current_config(&self) -> Config {
#[cfg(any(spi_v1, spi_f1, spi_v2))]
let cfg = T::REGS.cr1().read();
@ -444,6 +463,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
self.current_word_size = word_size;
}
/// SPI write, using DMA.
pub async fn write<W: Word>(&mut self, data: &[W]) -> Result<(), Error>
where
Tx: TxDma<T>,
@ -477,6 +497,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
Ok(())
}
/// SPI read, using DMA.
pub async fn read<W: Word>(&mut self, data: &mut [W]) -> Result<(), Error>
where
Tx: TxDma<T>,
@ -580,6 +601,12 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
Ok(())
}
/// Bidirectional transfer, using DMA.
///
/// This transfers both buffers at the same time, so it is NOT equivalent to `write` followed by `read`.
///
/// The transfer runs for `max(read.len(), write.len())` bytes. If `read` is shorter extra bytes are ignored.
/// If `write` is shorter it is padded with zero bytes.
pub async fn transfer<W: Word>(&mut self, read: &mut [W], write: &[W]) -> Result<(), Error>
where
Tx: TxDma<T>,
@ -588,6 +615,9 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
self.transfer_inner(read, write).await
}
/// In-place bidirectional transfer, using DMA.
///
/// This writes the contents of `data` on MOSI, and puts the received data on MISO in `data`, at the same time.
pub async fn transfer_in_place<W: Word>(&mut self, data: &mut [W]) -> Result<(), Error>
where
Tx: TxDma<T>,
@ -596,6 +626,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
self.transfer_inner(data, data).await
}
/// Blocking write.
pub fn blocking_write<W: Word>(&mut self, words: &[W]) -> Result<(), Error> {
T::REGS.cr1().modify(|w| w.set_spe(true));
flush_rx_fifo(T::REGS);
@ -606,6 +637,7 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
Ok(())
}
/// Blocking read.
pub fn blocking_read<W: Word>(&mut self, words: &mut [W]) -> Result<(), Error> {
T::REGS.cr1().modify(|w| w.set_spe(true));
flush_rx_fifo(T::REGS);
@ -616,6 +648,9 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
Ok(())
}
/// Blocking in-place bidirectional transfer.
///
/// This writes the contents of `data` on MOSI, and puts the received data on MISO in `data`, at the same time.
pub fn blocking_transfer_in_place<W: Word>(&mut self, words: &mut [W]) -> Result<(), Error> {
T::REGS.cr1().modify(|w| w.set_spe(true));
flush_rx_fifo(T::REGS);
@ -626,6 +661,12 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
Ok(())
}
/// Blocking bidirectional transfer.
///
/// This transfers both buffers at the same time, so it is NOT equivalent to `write` followed by `read`.
///
/// The transfer runs for `max(read.len(), write.len())` bytes. If `read` is shorter extra bytes are ignored.
/// If `write` is shorter it is padded with zero bytes.
pub fn blocking_transfer<W: Word>(&mut self, read: &mut [W], write: &[W]) -> Result<(), Error> {
T::REGS.cr1().modify(|w| w.set_spe(true));
flush_rx_fifo(T::REGS);
@ -946,6 +987,7 @@ pub(crate) mod sealed {
}
}
/// Word sizes usable for SPI.
pub trait Word: word::Word + sealed::Word {}
macro_rules! impl_word {
@ -1025,7 +1067,9 @@ mod word_impl {
impl_word!(u32, 32 - 1);
}
/// SPI instance trait.
pub trait Instance: Peripheral<P = Self> + sealed::Instance + RccPeripheral {}
pin_trait!(SckPin, Instance);
pin_trait!(MosiPin, Instance);
pin_trait!(MisoPin, Instance);

View file

@ -8,14 +8,17 @@ use core::ops::{Div, Mul};
pub struct Hertz(pub u32);
impl Hertz {
/// Create a `Hertz` from the given hertz.
pub const fn hz(hertz: u32) -> Self {
Self(hertz)
}
/// Create a `Hertz` from the given kilohertz.
pub const fn khz(kilohertz: u32) -> Self {
Self(kilohertz * 1_000)
}
/// Create a `Hertz` from the given megahertz.
pub const fn mhz(megahertz: u32) -> Self {
Self(megahertz * 1_000_000)
}