diff --git a/embassy-rp/src/i2c.rs b/embassy-rp/src/i2c.rs index a6f278827..c609b02ea 100644 --- a/embassy-rp/src/i2c.rs +++ b/embassy-rp/src/i2c.rs @@ -56,14 +56,115 @@ pub struct I2c<'d, T: Instance, M: Mode> { impl<'d, T: Instance> I2c<'d, T, Blocking> { pub fn new_blocking( - _peri: impl Peripheral

+ 'd, + peri: impl Peripheral

+ 'd, scl: impl Peripheral

> + 'd, sda: impl Peripheral

> + 'd, config: Config, ) -> Self { into_ref!(scl, sda); - Self::new_inner(_peri, scl.map_into(), sda.map_into(), config) + Self::new_inner(peri, scl.map_into(), sda.map_into(), config) } + + fn read_blocking_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> { + if buffer.is_empty() { + return Err(Error::InvalidReadBufferLength); + } + + let p = T::regs(); + let lastindex = buffer.len() - 1; + for (i, byte) in buffer.iter_mut().enumerate() { + let first = i == 0; + let last = i == lastindex; + + // NOTE(unsafe) We have &mut self + unsafe { + // wait until there is space in the FIFO to write the next byte + while p.ic_txflr().read().txflr() == FIFO_SIZE {} + + p.ic_data_cmd().write(|w| { + w.set_restart(restart && first); + w.set_stop(send_stop && last); + + w.set_cmd(true); + }); + + while p.ic_rxflr().read().rxflr() == 0 { + self.read_and_clear_abort_reason()?; + } + + *byte = p.ic_data_cmd().read().dat(); + } + } + + Ok(()) + } + + fn write_blocking_internal(&mut self, bytes: &[u8], send_stop: bool) -> Result<(), Error> { + if bytes.is_empty() { + return Err(Error::InvalidWriteBufferLength); + } + + let p = T::regs(); + + for (i, byte) in bytes.iter().enumerate() { + let last = i == bytes.len() - 1; + + // NOTE(unsafe) We have &mut self + unsafe { + p.ic_data_cmd().write(|w| { + w.set_stop(send_stop && last); + w.set_dat(*byte); + }); + + // Wait until the transmission of the address/data from the + // internal shift register has completed. For this to function + // correctly, the TX_EMPTY_CTRL flag in IC_CON must be set. The + // TX_EMPTY_CTRL flag was set in i2c_init. + while !p.ic_raw_intr_stat().read().tx_empty() {} + + let abort_reason = self.read_and_clear_abort_reason(); + + if abort_reason.is_err() || (send_stop && last) { + // If the transaction was aborted or if it completed + // successfully wait until the STOP condition has occured. + + while !p.ic_raw_intr_stat().read().stop_det() {} + + p.ic_clr_stop_det().read().clr_stop_det(); + } + + // Note the hardware issues a STOP automatically on an abort + // condition. Note also the hardware clears RX FIFO as well as + // TX on abort, ecause we set hwparam + // IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0. + abort_reason?; + } + } + Ok(()) + } + + // ========================= + // Blocking public API + // ========================= + + pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> { + Self::setup(address.into())?; + self.read_blocking_internal(buffer, true, true) + // Automatic Stop + } + + pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> { + Self::setup(address.into())?; + self.write_blocking_internal(bytes, true) + } + + pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> { + Self::setup(address.into())?; + self.write_blocking_internal(bytes, false)?; + self.read_blocking_internal(buffer, true, true) + // Automatic Stop + } +} } impl<'d, T: Instance, M: Mode> I2c<'d, T, M> { @@ -217,111 +318,12 @@ impl<'d, T: Instance, M: Mode> I2c<'d, T, M> { } } - fn read_blocking_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> { - if buffer.is_empty() { - return Err(Error::InvalidReadBufferLength); - } - - let p = T::regs(); - let lastindex = buffer.len() - 1; - for (i, byte) in buffer.iter_mut().enumerate() { - let first = i == 0; - let last = i == lastindex; - - // NOTE(unsafe) We have &mut self - unsafe { - // wait until there is space in the FIFO to write the next byte - while p.ic_txflr().read().txflr() == FIFO_SIZE {} - - p.ic_data_cmd().write(|w| { - w.set_restart(restart && first); - w.set_stop(send_stop && last); - - w.set_cmd(true); - }); - - while p.ic_rxflr().read().rxflr() == 0 { - self.read_and_clear_abort_reason()?; - } - - *byte = p.ic_data_cmd().read().dat(); - } - } - - Ok(()) - } - - fn write_blocking_internal(&mut self, bytes: &[u8], send_stop: bool) -> Result<(), Error> { - if bytes.is_empty() { - return Err(Error::InvalidWriteBufferLength); - } - - let p = T::regs(); - - for (i, byte) in bytes.iter().enumerate() { - let last = i == bytes.len() - 1; - - // NOTE(unsafe) We have &mut self - unsafe { - p.ic_data_cmd().write(|w| { - w.set_stop(send_stop && last); - w.set_dat(*byte); - }); - - // Wait until the transmission of the address/data from the - // internal shift register has completed. For this to function - // correctly, the TX_EMPTY_CTRL flag in IC_CON must be set. The - // TX_EMPTY_CTRL flag was set in i2c_init. - while !p.ic_raw_intr_stat().read().tx_empty() {} - - let abort_reason = self.read_and_clear_abort_reason(); - - if abort_reason.is_err() || (send_stop && last) { - // If the transaction was aborted or if it completed - // successfully wait until the STOP condition has occured. - - while !p.ic_raw_intr_stat().read().stop_det() {} - - p.ic_clr_stop_det().read().clr_stop_det(); - } - - // Note the hardware issues a STOP automatically on an abort - // condition. Note also the hardware clears RX FIFO as well as - // TX on abort, ecause we set hwparam - // IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0. - abort_reason?; - } - } - Ok(()) - } - - // ========================= - // Blocking public API - // ========================= - - pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> { - Self::setup(address.into())?; - self.read_blocking_internal(buffer, true, true) - // Automatic Stop - } - - pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> { - Self::setup(address.into())?; - self.write_blocking_internal(bytes, true) - } - - pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> { - Self::setup(address.into())?; - self.write_blocking_internal(bytes, false)?; - self.read_blocking_internal(buffer, true, true) - // Automatic Stop - } } mod eh02 { use super::*; - impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Read for I2c<'d, T, M> { + impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T, Blocking> { type Error = Error; fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> { @@ -329,7 +331,7 @@ mod eh02 { } } - impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Write for I2c<'d, T, M> { + impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T, Blocking> { type Error = Error; fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> { @@ -337,7 +339,7 @@ mod eh02 { } } - impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T, M> { + impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T, Blocking> { type Error = Error; fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> { @@ -370,7 +372,7 @@ mod eh1 { type Error = Error; } - impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::I2c for I2c<'d, T, M> { + impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, Blocking> { fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> { self.blocking_read(address, buffer) }