514: Refactor sx127x driver to use async SPI r=lulf a=lulf

It also contains a fix to SPI DMA transfer/read_write operations to ensure MISO doesn't contain any old data.

Co-authored-by: Ulf Lilleengen <lulf@redhat.com>
This commit is contained in:
bors[bot] 2021-12-06 08:35:11 +00:00 committed by GitHub
commit 7c155c3aba
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 269 additions and 233 deletions

View file

@ -23,5 +23,5 @@ futures = { version = "0.3.17", default-features = false, features = [ "async-aw
embedded-hal = { version = "0.2", features = ["unproven"] }
bit_field = { version = "0.10" }
lorawan-device = { git = "https://github.com/ivajloip/rust-lorawan.git", rev = "4bff2e0021103adfbccedcbf49dbcd0474adc4b2", default-features = false, features = ["async"] }
lorawan-encoding = { git = "https://github.com/ivajloip/rust-lorawan.git", rev = "4bff2e0021103adfbccedcbf49dbcd0474adc4b2", default-features = false }
lorawan-device = { git = "https://github.com/ivajloip/rust-lorawan.git", rev = "53d2feb43e2f3ddcdc55f0587391b0d3f02d8d93", default-features = false, features = ["async"] }
lorawan-encoding = { git = "https://github.com/ivajloip/rust-lorawan.git", rev = "53d2feb43e2f3ddcdc55f0587391b0d3f02d8d93", default-features = false }

View file

@ -1,7 +1,6 @@
use core::future::Future;
use embassy::traits::gpio::WaitForRisingEdge;
use embedded_hal::blocking::delay::DelayMs;
use embedded_hal::blocking::spi::{Transfer, Write};
use embassy::traits::spi::*;
use embedded_hal::digital::v2::OutputPin;
use lorawan_device::async_device::{
radio::{Bandwidth, PhyRxTx, RfConfig, RxQuality, SpreadingFactor, TxConfig},
@ -21,7 +20,7 @@ pub trait RadioSwitch {
/// Semtech Sx127x radio peripheral
pub struct Sx127xRadio<SPI, CS, RESET, E, I, RFS>
where
SPI: Transfer<u8, Error = E> + Write<u8, Error = E> + 'static,
SPI: FullDuplex<u8, Error = E> + 'static,
E: 'static,
CS: OutputPin + 'static,
RESET: OutputPin + 'static,
@ -43,29 +42,29 @@ pub enum State {
impl<SPI, CS, RESET, E, I, RFS> Sx127xRadio<SPI, CS, RESET, E, I, RFS>
where
SPI: Transfer<u8, Error = E> + Write<u8, Error = E> + 'static,
SPI: FullDuplex<u8, Error = E> + 'static,
CS: OutputPin + 'static,
RESET: OutputPin + 'static,
I: WaitForRisingEdge + 'static,
RFS: RadioSwitch + 'static,
E: 'static,
{
pub fn new<D: DelayMs<u32>>(
pub async fn new(
spi: SPI,
cs: CS,
reset: RESET,
irq: I,
rfs: RFS,
d: &mut D,
) -> Result<Self, RadioError<E, CS::Error, RESET::Error>> {
let mut radio = LoRa::new(spi, cs, reset);
radio.reset(d)?;
radio.reset().await?;
Ok(Self { radio, irq, rfs })
}
}
impl<SPI, CS, RESET, E, I, RFS> Timings for Sx127xRadio<SPI, CS, RESET, E, I, RFS>
where
SPI: Transfer<u8, Error = E> + Write<u8, Error = E> + 'static,
SPI: FullDuplex<u8, Error = E> + 'static,
CS: OutputPin + 'static,
RESET: OutputPin + 'static,
I: WaitForRisingEdge + 'static,
@ -81,7 +80,7 @@ where
impl<SPI, CS, RESET, E, I, RFS> PhyRxTx for Sx127xRadio<SPI, CS, RESET, E, I, RFS>
where
SPI: Transfer<u8, Error = E> + Write<u8, Error = E> + 'static,
SPI: FullDuplex<u8, Error = E> + 'static,
CS: OutputPin + 'static,
E: 'static,
RESET: OutputPin + 'static,
@ -96,29 +95,33 @@ where
fn tx<'m>(&'m mut self, config: TxConfig, buf: &'m [u8]) -> Self::TxFuture<'m> {
trace!("TX START");
async move {
self.radio.set_mode(RadioMode::Stdby).await.ok().unwrap();
self.rfs.set_tx();
self.radio.set_tx_power(14, 0)?;
self.radio.set_frequency(config.rf.frequency)?;
self.radio.set_tx_power(14, 0).await?;
self.radio.set_frequency(config.rf.frequency).await?;
// TODO: Modify radio to support other coding rates
self.radio.set_coding_rate_4(5)?;
self.radio.set_coding_rate_4(5).await?;
self.radio
.set_signal_bandwidth(bandwidth_to_i64(config.rf.bandwidth))?;
.set_signal_bandwidth(bandwidth_to_i64(config.rf.bandwidth))
.await?;
self.radio
.set_spreading_factor(spreading_factor_to_u8(config.rf.spreading_factor))?;
.set_spreading_factor(spreading_factor_to_u8(config.rf.spreading_factor))
.await?;
self.radio.set_preamble_length(8)?;
self.radio.set_lora_pa_ramp()?;
self.radio.set_lora_sync_word()?;
self.radio.set_invert_iq(false)?;
self.radio.set_crc(true)?;
self.radio.set_preamble_length(8).await?;
self.radio.set_lora_pa_ramp().await?;
self.radio.set_lora_sync_word().await?;
self.radio.set_invert_iq(false).await?;
self.radio.set_crc(true).await?;
self.radio.set_dio0_tx_done()?;
self.radio.transmit_payload(buf)?;
self.radio.set_dio0_tx_done().await?;
self.radio.transmit_start(buf).await?;
loop {
self.irq.wait_for_rising_edge().await;
self.radio.set_mode(RadioMode::Stdby).ok().unwrap();
let irq = self.radio.clear_irq().ok().unwrap();
self.radio.set_mode(RadioMode::Stdby).await.ok().unwrap();
let irq = self.radio.clear_irq().await.ok().unwrap();
if (irq & IRQ::IrqTxDoneMask.addr()) != 0 {
trace!("TX DONE");
return Ok(0);
@ -134,32 +137,34 @@ where
trace!("RX START");
async move {
self.rfs.set_rx();
self.radio.reset_payload_length()?;
self.radio.set_frequency(config.frequency)?;
self.radio.reset_payload_length().await?;
self.radio.set_frequency(config.frequency).await?;
// TODO: Modify radio to support other coding rates
self.radio.set_coding_rate_4(5)?;
self.radio.set_coding_rate_4(5).await?;
self.radio
.set_signal_bandwidth(bandwidth_to_i64(config.bandwidth))?;
.set_signal_bandwidth(bandwidth_to_i64(config.bandwidth))
.await?;
self.radio
.set_spreading_factor(spreading_factor_to_u8(config.spreading_factor))?;
.set_spreading_factor(spreading_factor_to_u8(config.spreading_factor))
.await?;
self.radio.set_preamble_length(8)?;
self.radio.set_lora_sync_word()?;
self.radio.set_invert_iq(true)?;
self.radio.set_crc(true)?;
self.radio.set_preamble_length(8).await?;
self.radio.set_lora_sync_word().await?;
self.radio.set_invert_iq(true).await?;
self.radio.set_crc(true).await?;
self.radio.set_dio0_rx_done()?;
self.radio.set_mode(RadioMode::RxContinuous)?;
self.radio.set_dio0_rx_done().await?;
self.radio.set_mode(RadioMode::RxContinuous).await?;
loop {
self.irq.wait_for_rising_edge().await;
self.radio.set_mode(RadioMode::Stdby).ok().unwrap();
let irq = self.radio.clear_irq().ok().unwrap();
self.radio.set_mode(RadioMode::Stdby).await.ok().unwrap();
let irq = self.radio.clear_irq().await.ok().unwrap();
if (irq & IRQ::IrqRxDoneMask.addr()) != 0 {
let rssi = self.radio.get_packet_rssi().unwrap_or(0) as i16;
let snr = self.radio.get_packet_snr().unwrap_or(0.0) as i8;
let response = if let Ok(size) = self.radio.read_packet_size() {
self.radio.read_packet(buf)?;
let rssi = self.radio.get_packet_rssi().await.unwrap_or(0) as i16;
let snr = self.radio.get_packet_snr().await.unwrap_or(0.0) as i8;
let response = if let Ok(size) = self.radio.read_packet_size().await {
self.radio.read_packet(buf).await?;
Ok((size, RxQuality::new(rssi, snr)))
} else {
Ok((0, RxQuality::new(rssi, snr)))

View file

@ -6,24 +6,15 @@
#![allow(dead_code)]
use bit_field::BitField;
use embedded_hal::blocking::{
delay::DelayMs,
spi::{Transfer, Write},
};
use embassy::time::{Duration, Timer};
use embassy::traits::spi::*;
use embedded_hal::digital::v2::OutputPin;
use embedded_hal::spi::{Mode, Phase, Polarity};
mod register;
use self::register::PaConfig;
use self::register::Register;
pub use self::register::IRQ;
/// Provides the necessary SPI mode configuration for the radio
pub const MODE: Mode = Mode {
phase: Phase::CaptureOnSecondTransition,
polarity: Polarity::IdleHigh,
};
/// Provides high-level access to Semtech SX1276/77/78/79 based boards connected to a Raspberry Pi
pub struct LoRa<SPI, CS, RESET> {
spi: SPI,
@ -56,7 +47,7 @@ const VERSION_CHECK: u8 = 0x09;
impl<SPI, CS, RESET, E> LoRa<SPI, CS, RESET>
where
SPI: Transfer<u8, Error = E> + Write<u8, Error = E>,
SPI: FullDuplex<u8, Error = E>,
CS: OutputPin,
RESET: OutputPin,
{
@ -72,24 +63,25 @@ where
}
}
pub fn reset<D: DelayMs<u32>>(
&mut self,
d: &mut D,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn reset(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.reset.set_low().map_err(Reset)?;
d.delay_ms(10_u32);
Timer::after(Duration::from_millis(10)).await;
self.reset.set_high().map_err(Reset)?;
d.delay_ms(10_u32);
let version = self.read_register(Register::RegVersion.addr())?;
Timer::after(Duration::from_millis(10)).await;
let version = self.read_register(Register::RegVersion.addr()).await?;
if version == VERSION_CHECK {
self.set_mode(RadioMode::Sleep)?;
self.write_register(Register::RegFifoTxBaseAddr.addr(), 0)?;
self.write_register(Register::RegFifoRxBaseAddr.addr(), 0)?;
let lna = self.read_register(Register::RegLna.addr())?;
self.write_register(Register::RegLna.addr(), lna | 0x03)?;
self.write_register(Register::RegModemConfig3.addr(), 0x04)?;
self.set_tcxo(true)?;
self.set_mode(RadioMode::Stdby)?;
self.set_mode(RadioMode::Sleep).await?;
self.write_register(Register::RegFifoTxBaseAddr.addr(), 0)
.await?;
self.write_register(Register::RegFifoRxBaseAddr.addr(), 0)
.await?;
let lna = self.read_register(Register::RegLna.addr()).await?;
self.write_register(Register::RegLna.addr(), lna | 0x03)
.await?;
self.write_register(Register::RegModemConfig3.addr(), 0x04)
.await?;
self.set_tcxo(true).await?;
self.set_mode(RadioMode::Stdby).await?;
self.cs.set_high().map_err(CS)?;
Ok(())
} else {
@ -97,137 +89,125 @@ where
}
}
/// Transmits up to 255 bytes of data. To avoid the use of an allocator, this takes a fixed 255 u8
/// array and a payload size and returns the number of bytes sent if successful.
pub fn transmit_payload_busy(
&mut self,
buffer: [u8; 255],
payload_size: usize,
) -> Result<usize, Error<E, CS::Error, RESET::Error>> {
if self.transmitting()? {
Err(Transmitting)
} else {
self.set_mode(RadioMode::Stdby)?;
if self.explicit_header {
self.set_explicit_header_mode()?;
} else {
self.set_implicit_header_mode()?;
}
self.write_register(Register::RegIrqFlags.addr(), 0)?;
self.write_register(Register::RegFifoAddrPtr.addr(), 0)?;
self.write_register(Register::RegPayloadLength.addr(), 0)?;
for byte in buffer.iter().take(payload_size) {
self.write_register(Register::RegFifo.addr(), *byte)?;
}
self.write_register(Register::RegPayloadLength.addr(), payload_size as u8)?;
self.set_mode(RadioMode::Tx)?;
while self.transmitting()? {}
Ok(payload_size)
}
}
pub fn set_dio0_tx_done(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegIrqFlagsMask.addr(), 0b1111_0111)?;
let mapping = self.read_register(Register::RegDioMapping1.addr())?;
pub async fn set_dio0_tx_done(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegIrqFlagsMask.addr(), 0b1111_0111)
.await?;
let mapping = self.read_register(Register::RegDioMapping1.addr()).await?;
self.write_register(Register::RegDioMapping1.addr(), (mapping & 0x3F) | 0x40)
.await
}
pub fn set_dio0_rx_done(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegIrqFlagsMask.addr(), 0b0001_1111)?;
let mapping = self.read_register(Register::RegDioMapping1.addr())?;
pub async fn set_dio0_rx_done(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegIrqFlagsMask.addr(), 0b0001_1111)
.await?;
let mapping = self.read_register(Register::RegDioMapping1.addr()).await?;
self.write_register(Register::RegDioMapping1.addr(), mapping & 0x3F)
.await
}
pub fn transmit_payload(
pub async fn transmit_start(
&mut self,
buffer: &[u8],
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
assert!(buffer.len() < 255);
if self.transmitting()? {
if self.transmitting().await? {
//trace!("ALREADY TRANSMNITTING");
Err(Transmitting)
} else {
self.set_mode(RadioMode::Stdby)?;
self.set_mode(RadioMode::Stdby).await?;
if self.explicit_header {
self.set_explicit_header_mode()?;
self.set_explicit_header_mode().await?;
} else {
self.set_implicit_header_mode()?;
self.set_implicit_header_mode().await?;
}
self.write_register(Register::RegIrqFlags.addr(), 0)?;
self.write_register(Register::RegFifoAddrPtr.addr(), 0)?;
self.write_register(Register::RegPayloadLength.addr(), 0)?;
self.write_register(Register::RegIrqFlags.addr(), 0).await?;
self.write_register(Register::RegFifoAddrPtr.addr(), 0)
.await?;
self.write_register(Register::RegPayloadLength.addr(), 0)
.await?;
for byte in buffer.iter() {
self.write_register(Register::RegFifo.addr(), *byte)?;
self.write_register(Register::RegFifo.addr(), *byte).await?;
}
self.write_register(Register::RegPayloadLength.addr(), buffer.len() as u8)?;
self.set_mode(RadioMode::Tx)?;
self.write_register(Register::RegPayloadLength.addr(), buffer.len() as u8)
.await?;
self.set_mode(RadioMode::Tx).await?;
Ok(())
}
}
pub fn packet_ready(&mut self) -> Result<bool, Error<E, CS::Error, RESET::Error>> {
Ok(self.read_register(Register::RegIrqFlags.addr())?.get_bit(6))
pub async fn packet_ready(&mut self) -> Result<bool, Error<E, CS::Error, RESET::Error>> {
Ok(self
.read_register(Register::RegIrqFlags.addr())
.await?
.get_bit(6))
}
pub fn irq_flags_mask(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
Ok(self.read_register(Register::RegIrqFlagsMask.addr())? as u8)
pub async fn irq_flags_mask(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
Ok(self.read_register(Register::RegIrqFlagsMask.addr()).await? as u8)
}
pub fn irq_flags(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
Ok(self.read_register(Register::RegIrqFlags.addr())? as u8)
pub async fn irq_flags(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
Ok(self.read_register(Register::RegIrqFlags.addr()).await? as u8)
}
pub fn read_packet_size(&mut self) -> Result<usize, Error<E, CS::Error, RESET::Error>> {
let size = self.read_register(Register::RegRxNbBytes.addr())?;
pub async fn read_packet_size(&mut self) -> Result<usize, Error<E, CS::Error, RESET::Error>> {
let size = self.read_register(Register::RegRxNbBytes.addr()).await?;
Ok(size as usize)
}
/// Returns the contents of the fifo as a fixed 255 u8 array. This should only be called is there is a
/// new packet ready to be read.
pub fn read_packet(
pub async fn read_packet(
&mut self,
buffer: &mut [u8],
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.clear_irq()?;
let size = self.read_register(Register::RegRxNbBytes.addr())?;
self.clear_irq().await?;
let size = self.read_register(Register::RegRxNbBytes.addr()).await?;
assert!(size as usize <= buffer.len());
let fifo_addr = self.read_register(Register::RegFifoRxCurrentAddr.addr())?;
self.write_register(Register::RegFifoAddrPtr.addr(), fifo_addr)?;
let fifo_addr = self
.read_register(Register::RegFifoRxCurrentAddr.addr())
.await?;
self.write_register(Register::RegFifoAddrPtr.addr(), fifo_addr)
.await?;
for i in 0..size {
let byte = self.read_register(Register::RegFifo.addr())?;
let byte = self.read_register(Register::RegFifo.addr()).await?;
buffer[i as usize] = byte;
}
self.write_register(Register::RegFifoAddrPtr.addr(), 0)?;
self.write_register(Register::RegFifoAddrPtr.addr(), 0)
.await?;
Ok(())
}
/// Returns true if the radio is currently transmitting a packet.
pub fn transmitting(&mut self) -> Result<bool, Error<E, CS::Error, RESET::Error>> {
if (self.read_register(Register::RegOpMode.addr())? & RadioMode::Tx.addr())
pub async fn transmitting(&mut self) -> Result<bool, Error<E, CS::Error, RESET::Error>> {
if (self.read_register(Register::RegOpMode.addr()).await?) & RadioMode::Tx.addr()
== RadioMode::Tx.addr()
{
Ok(true)
} else {
if (self.read_register(Register::RegIrqFlags.addr())? & IRQ::IrqTxDoneMask.addr()) == 1
if (self.read_register(Register::RegIrqFlags.addr()).await? & IRQ::IrqTxDoneMask.addr())
== 1
{
self.write_register(Register::RegIrqFlags.addr(), IRQ::IrqTxDoneMask.addr())?;
self.write_register(Register::RegIrqFlags.addr(), IRQ::IrqTxDoneMask.addr())
.await?;
}
Ok(false)
}
}
/// Clears the radio's IRQ registers.
pub fn clear_irq(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
let irq_flags = self.read_register(Register::RegIrqFlags.addr())?;
self.write_register(Register::RegIrqFlags.addr(), 0xFF)?;
pub async fn clear_irq(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
let irq_flags = self.read_register(Register::RegIrqFlags.addr()).await?;
self.write_register(Register::RegIrqFlags.addr(), 0xFF)
.await?;
Ok(irq_flags)
}
/// Sets the transmit power and pin. Levels can range from 0-14 when the output
/// pin = 0(RFO), and form 0-20 when output pin = 1(PaBoost). Power is in dB.
/// Default value is `17`.
pub fn set_tx_power(
pub async fn set_tx_power(
&mut self,
mut level: i32,
output_pin: u8,
@ -240,6 +220,7 @@ where
level = 14;
}
self.write_register(Register::RegPaConfig.addr(), (0x70 | level) as u8)
.await
} else {
// PA BOOST
if level > 17 {
@ -250,30 +231,31 @@ where
level -= 3;
// High Power +20 dBm Operation (Semtech SX1276/77/78/79 5.4.3.)
self.write_register(Register::RegPaDac.addr(), 0x87)?;
self.set_ocp(140)?;
self.write_register(Register::RegPaDac.addr(), 0x87).await?;
self.set_ocp(140).await?;
} else {
if level < 2 {
level = 2;
}
//Default value PA_HF/LF or +17dBm
self.write_register(Register::RegPaDac.addr(), 0x84)?;
self.set_ocp(100)?;
self.write_register(Register::RegPaDac.addr(), 0x84).await?;
self.set_ocp(100).await?;
}
level -= 2;
self.write_register(
Register::RegPaConfig.addr(),
PaConfig::PaBoost.addr() | level as u8,
)
.await
}
}
pub fn get_modem_stat(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
Ok(self.read_register(Register::RegModemStat.addr())? as u8)
pub async fn get_modem_stat(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
Ok(self.read_register(Register::RegModemStat.addr()).await? as u8)
}
/// Sets the over current protection on the radio(mA).
pub fn set_ocp(&mut self, ma: u8) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn set_ocp(&mut self, ma: u8) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let mut ocp_trim: u8 = 27;
if ma <= 120 {
@ -282,31 +264,40 @@ where
ocp_trim = (ma + 30) / 10;
}
self.write_register(Register::RegOcp.addr(), 0x20 | (0x1F & ocp_trim))
.await
}
/// Sets the state of the radio. Default mode after initiation is `Standby`.
pub fn set_mode(&mut self, mode: RadioMode) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn set_mode(
&mut self,
mode: RadioMode,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if self.explicit_header {
self.set_explicit_header_mode()?;
self.set_explicit_header_mode().await?;
} else {
self.set_implicit_header_mode()?;
self.set_implicit_header_mode().await?;
}
self.write_register(
Register::RegOpMode.addr(),
RadioMode::LongRangeMode.addr() | mode.addr(),
)?;
)
.await?;
self.mode = mode;
Ok(())
}
pub fn reset_payload_length(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn reset_payload_length(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegPayloadLength.addr(), 0xFF)
.await
}
/// Sets the frequency of the radio. Values are in megahertz.
/// I.E. 915 MHz must be used for North America. Check regulation for your area.
pub fn set_frequency(&mut self, freq: u32) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn set_frequency(
&mut self,
freq: u32,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
const FREQ_STEP: f64 = 61.03515625;
// calculate register values
let frf = (freq as f64 / FREQ_STEP) as u32;
@ -314,23 +305,28 @@ where
self.write_register(
Register::RegFrfMsb.addr(),
((frf & 0x00FF_0000) >> 16) as u8,
)?;
self.write_register(Register::RegFrfMid.addr(), ((frf & 0x0000_FF00) >> 8) as u8)?;
)
.await?;
self.write_register(Register::RegFrfMid.addr(), ((frf & 0x0000_FF00) >> 8) as u8)
.await?;
self.write_register(Register::RegFrfLsb.addr(), (frf & 0x0000_00FF) as u8)
.await
}
/// Sets the radio to use an explicit header. Default state is `ON`.
fn set_explicit_header_mode(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let reg_modem_config_1 = self.read_register(Register::RegModemConfig1.addr())?;
self.write_register(Register::RegModemConfig1.addr(), reg_modem_config_1 & 0xfe)?;
async fn set_explicit_header_mode(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let reg_modem_config_1 = self.read_register(Register::RegModemConfig1.addr()).await?;
self.write_register(Register::RegModemConfig1.addr(), reg_modem_config_1 & 0xfe)
.await?;
self.explicit_header = true;
Ok(())
}
/// Sets the radio to use an implicit header. Default state is `OFF`.
fn set_implicit_header_mode(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let reg_modem_config_1 = self.read_register(Register::RegModemConfig1.addr())?;
self.write_register(Register::RegModemConfig1.addr(), reg_modem_config_1 & 0x01)?;
async fn set_implicit_header_mode(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let reg_modem_config_1 = self.read_register(Register::RegModemConfig1.addr()).await?;
self.write_register(Register::RegModemConfig1.addr(), reg_modem_config_1 & 0x01)
.await?;
self.explicit_header = false;
Ok(())
}
@ -338,7 +334,7 @@ where
/// Sets the spreading factor of the radio. Supported values are between 6 and 12.
/// If a spreading factor of 6 is set, implicit header mode must be used to transmit
/// and receive packets. Default value is `7`.
pub fn set_spreading_factor(
pub async fn set_spreading_factor(
&mut self,
mut sf: u8,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
@ -349,36 +345,45 @@ where
}
if sf == 6 {
self.write_register(Register::RegDetectionOptimize.addr(), 0xc5)?;
self.write_register(Register::RegDetectionThreshold.addr(), 0x0c)?;
self.write_register(Register::RegDetectionOptimize.addr(), 0xc5)
.await?;
self.write_register(Register::RegDetectionThreshold.addr(), 0x0c)
.await?;
} else {
self.write_register(Register::RegDetectionOptimize.addr(), 0xc3)?;
self.write_register(Register::RegDetectionThreshold.addr(), 0x0a)?;
self.write_register(Register::RegDetectionOptimize.addr(), 0xc3)
.await?;
self.write_register(Register::RegDetectionThreshold.addr(), 0x0a)
.await?;
}
let modem_config_2 = self.read_register(Register::RegModemConfig2.addr())?;
let modem_config_2 = self.read_register(Register::RegModemConfig2.addr()).await?;
self.write_register(
Register::RegModemConfig2.addr(),
(modem_config_2 & 0x0f) | ((sf << 4) & 0xf0),
)?;
self.set_ldo_flag()?;
)
.await?;
self.set_ldo_flag().await?;
self.write_register(Register::RegSymbTimeoutLsb.addr(), 0x05)?;
self.write_register(Register::RegSymbTimeoutLsb.addr(), 0x05)
.await?;
Ok(())
}
pub fn set_tcxo(&mut self, external: bool) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn set_tcxo(
&mut self,
external: bool,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if external {
self.write_register(Register::RegTcxo.addr(), 0x10)
self.write_register(Register::RegTcxo.addr(), 0x10).await
} else {
self.write_register(Register::RegTcxo.addr(), 0x00)
self.write_register(Register::RegTcxo.addr(), 0x00).await
}
}
/// Sets the signal bandwidth of the radio. Supported values are: `7800 Hz`, `10400 Hz`,
/// `15600 Hz`, `20800 Hz`, `31250 Hz`,`41700 Hz` ,`62500 Hz`,`125000 Hz` and `250000 Hz`
/// Default value is `125000 Hz`
pub fn set_signal_bandwidth(
pub async fn set_signal_bandwidth(
&mut self,
sbw: i64,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
@ -394,19 +399,20 @@ where
250_000 => 8,
_ => 9,
};
let modem_config_1 = self.read_register(Register::RegModemConfig1.addr())?;
let modem_config_1 = self.read_register(Register::RegModemConfig1.addr()).await?;
self.write_register(
Register::RegModemConfig1.addr(),
(modem_config_1 & 0x0f) | ((bw << 4) as u8),
)?;
self.set_ldo_flag()?;
)
.await?;
self.set_ldo_flag().await?;
Ok(())
}
/// Sets the coding rate of the radio with the numerator fixed at 4. Supported values
/// are between `5` and `8`, these correspond to coding rates of `4/5` and `4/8`.
/// Default value is `5`.
pub fn set_coding_rate_4(
pub async fn set_coding_rate_4(
&mut self,
mut denominator: u8,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
@ -416,52 +422,64 @@ where
denominator = 8;
}
let cr = denominator - 4;
let modem_config_1 = self.read_register(Register::RegModemConfig1.addr())?;
let modem_config_1 = self.read_register(Register::RegModemConfig1.addr()).await?;
self.write_register(
Register::RegModemConfig1.addr(),
(modem_config_1 & 0xf1) | (cr << 1),
)
.await
}
/// Sets the preamble length of the radio. Values are between 6 and 65535.
/// Default value is `8`.
pub fn set_preamble_length(
pub async fn set_preamble_length(
&mut self,
length: i64,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegPreambleMsb.addr(), (length >> 8) as u8)?;
self.write_register(Register::RegPreambleMsb.addr(), (length >> 8) as u8)
.await?;
self.write_register(Register::RegPreambleLsb.addr(), length as u8)
.await
}
/// Enables are disables the radio's CRC check. Default value is `false`.
pub fn set_crc(&mut self, value: bool) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let modem_config_2 = self.read_register(Register::RegModemConfig2.addr())?;
pub async fn set_crc(&mut self, value: bool) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let modem_config_2 = self.read_register(Register::RegModemConfig2.addr()).await?;
if value {
self.write_register(Register::RegModemConfig2.addr(), modem_config_2 | 0x04)
.await
} else {
self.write_register(Register::RegModemConfig2.addr(), modem_config_2 & 0xfb)
.await
}
}
/// Inverts the radio's IQ signals. Default value is `false`.
pub fn set_invert_iq(&mut self, value: bool) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn set_invert_iq(
&mut self,
value: bool,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
if value {
self.write_register(Register::RegInvertiq.addr(), 0x66)?;
self.write_register(Register::RegInvertiq.addr(), 0x66)
.await?;
self.write_register(Register::RegInvertiq2.addr(), 0x19)
.await
} else {
self.write_register(Register::RegInvertiq.addr(), 0x27)?;
self.write_register(Register::RegInvertiq.addr(), 0x27)
.await?;
self.write_register(Register::RegInvertiq2.addr(), 0x1d)
.await
}
}
/// Returns the spreading factor of the radio.
pub fn get_spreading_factor(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
Ok(self.read_register(Register::RegModemConfig2.addr())? >> 4)
pub async fn get_spreading_factor(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
Ok(self.read_register(Register::RegModemConfig2.addr()).await? >> 4)
}
/// Returns the signal bandwidth of the radio.
pub fn get_signal_bandwidth(&mut self) -> Result<i64, Error<E, CS::Error, RESET::Error>> {
let bw = self.read_register(Register::RegModemConfig1.addr())? >> 4;
pub async fn get_signal_bandwidth(&mut self) -> Result<i64, Error<E, CS::Error, RESET::Error>> {
let bw = self.read_register(Register::RegModemConfig1.addr()).await? >> 4;
let bw = match bw {
0 => 7_800,
1 => 10_400,
@ -479,69 +497,76 @@ where
}
/// Returns the RSSI of the last received packet.
pub fn get_packet_rssi(&mut self) -> Result<i32, Error<E, CS::Error, RESET::Error>> {
Ok(i32::from(self.read_register(Register::RegPktRssiValue.addr())?) - 157)
pub async fn get_packet_rssi(&mut self) -> Result<i32, Error<E, CS::Error, RESET::Error>> {
Ok(i32::from(self.read_register(Register::RegPktRssiValue.addr()).await?) - 157)
}
/// Returns the signal to noise radio of the the last received packet.
pub fn get_packet_snr(&mut self) -> Result<f64, Error<E, CS::Error, RESET::Error>> {
pub async fn get_packet_snr(&mut self) -> Result<f64, Error<E, CS::Error, RESET::Error>> {
Ok(f64::from(
self.read_register(Register::RegPktSnrValue.addr())?,
self.read_register(Register::RegPktSnrValue.addr()).await?,
))
}
/// Returns the frequency error of the last received packet in Hz.
pub fn get_packet_frequency_error(&mut self) -> Result<i64, Error<E, CS::Error, RESET::Error>> {
pub async fn get_packet_frequency_error(
&mut self,
) -> Result<i64, Error<E, CS::Error, RESET::Error>> {
let mut freq_error: i32;
freq_error = i32::from(self.read_register(Register::RegFreqErrorMsb.addr())? & 0x7);
freq_error = i32::from(self.read_register(Register::RegFreqErrorMsb.addr()).await? & 0x7);
freq_error <<= 8i64;
freq_error += i32::from(self.read_register(Register::RegFreqErrorMid.addr())?);
freq_error += i32::from(self.read_register(Register::RegFreqErrorMid.addr()).await?);
freq_error <<= 8i64;
freq_error += i32::from(self.read_register(Register::RegFreqErrorLsb.addr())?);
freq_error += i32::from(self.read_register(Register::RegFreqErrorLsb.addr()).await?);
let f_xtal = 32_000_000; // FXOSC: crystal oscillator (XTAL) frequency (2.5. Chip Specification, p. 14)
let f_error = ((f64::from(freq_error) * (1i64 << 24) as f64) / f64::from(f_xtal))
* (self.get_signal_bandwidth()? as f64 / 500_000.0f64); // p. 37
* (self.get_signal_bandwidth().await? as f64 / 500_000.0f64); // p. 37
Ok(f_error as i64)
}
fn set_ldo_flag(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let sw = self.get_signal_bandwidth()?;
async fn set_ldo_flag(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
let sw = self.get_signal_bandwidth().await?;
// Section 4.1.1.5
let symbol_duration = 1000 / (sw / ((1_i64) << self.get_spreading_factor()?));
let symbol_duration = 1000 / (sw / ((1_i64) << self.get_spreading_factor().await?));
// Section 4.1.1.6
let ldo_on = symbol_duration > 16;
let mut config_3 = self.read_register(Register::RegModemConfig3.addr())?;
let mut config_3 = self.read_register(Register::RegModemConfig3.addr()).await?;
config_3.set_bit(3, ldo_on);
//config_3.set_bit(2, true);
self.write_register(Register::RegModemConfig3.addr(), config_3)
.await
}
fn read_register(&mut self, reg: u8) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
async fn read_register(&mut self, reg: u8) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
let mut buffer = [reg & 0x7f, 0];
self.cs.set_low().map_err(CS)?;
let mut buffer = [reg & 0x7f, 0];
let transfer = self.spi.transfer(&mut buffer).map_err(SPI)?;
let _ = self
.spi
.read_write(&mut buffer, &[reg & 0x7f, 0])
.await
.map_err(SPI)?;
self.cs.set_high().map_err(CS)?;
Ok(transfer[1])
Ok(buffer[1])
}
fn write_register(
async fn write_register(
&mut self,
reg: u8,
byte: u8,
) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.cs.set_low().map_err(CS)?;
let buffer = [reg | 0x80, byte];
self.spi.write(&buffer).map_err(SPI)?;
self.spi.write(&buffer).await.map_err(SPI)?;
self.cs.set_high().map_err(CS)?;
Ok(())
}
pub fn put_in_fsk_mode(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
pub async fn put_in_fsk_mode(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
// Put in FSK mode
let mut op_mode = 0;
op_mode
@ -551,9 +576,10 @@ where
.set_bits(0..2, 0b011); // Mode
self.write_register(Register::RegOpMode as u8, op_mode)
.await
}
pub fn set_fsk_pa_ramp(
pub async fn set_fsk_pa_ramp(
&mut self,
modulation_shaping: FskDataModulationShaping,
ramp: FskRampUpRamDown,
@ -564,14 +590,15 @@ where
.set_bits(0..3, ramp as u8);
self.write_register(Register::RegPaRamp as u8, pa_ramp)
.await
}
pub fn set_lora_pa_ramp(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegPaRamp as u8, 0b1000)
pub async fn set_lora_pa_ramp(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegPaRamp as u8, 0b1000).await
}
pub fn set_lora_sync_word(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegSyncWord as u8, 0x34)
pub async fn set_lora_sync_word(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
self.write_register(Register::RegSyncWord as u8, 0x34).await
}
}
/// Modes of the radio and their corresponding register values.

View file

@ -262,6 +262,11 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
T::regs().cr2().modify(|reg| {
reg.set_rxdmaen(true);
});
// Flush the read buffer to avoid errornous data from being read
while T::regs().sr().read().rxne() {
let _ = T::regs().dr().read();
}
}
Self::set_word_size(WordSize::EightBit);

View file

@ -284,6 +284,11 @@ impl<'d, T: Instance, Tx, Rx> Spi<'d, T, Tx, Rx> {
T::regs().cfg1().modify(|reg| {
reg.set_rxdmaen(true);
});
// Flush the read buffer to avoid errornous data from being read
while T::regs().sr().read().rxp() {
let _ = T::regs().rxdr().read();
}
}
let rx_request = self.rxdma.request();

View file

@ -10,16 +10,17 @@ embassy = { version = "0.1.0", path = "../../embassy", features = ["defmt"] }
embassy-traits = { version = "0.1.0", path = "../../embassy-traits", features = ["defmt"] }
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["defmt", "stm32l072cz", "time-driver-tim3"] }
embassy-lora = { version = "0.1.0", path = "../../embassy-lora", features = ["sx127x", "time"] }
lorawan-device = { git = "https://github.com/ivajloip/rust-lorawan.git", rev = "4bff2e0021103adfbccedcbf49dbcd0474adc4b2", default-features = false, features = ["async"] }
lorawan-encoding = { git = "https://github.com/ivajloip/rust-lorawan.git", rev = "4bff2e0021103adfbccedcbf49dbcd0474adc4b2", default-features = false, features = ["default-crypto"] }
embassy-lora = { version = "0.1.0", path = "../../embassy-lora", features = ["sx127x", "time", "defmt"] }
lorawan-device = { git = "https://github.com/ivajloip/rust-lorawan.git", rev = "53d2feb43e2f3ddcdc55f0587391b0d3f02d8d93", default-features = false, features = ["async"] }
lorawan-encoding = { git = "https://github.com/ivajloip/rust-lorawan.git", rev = "53d2feb43e2f3ddcdc55f0587391b0d3f02d8d93", default-features = false, features = ["default-crypto"] }
defmt = "0.3"
defmt-rtt = "0.3"
cortex-m = "0.7.3"
cortex-m-rt = "0.7.0"
embedded-hal = "0.2.6"
panic-probe = { version = "0.3", features = ["print-defmt"] }
futures = { version = "0.3.17", default-features = false, features = ["async-await"] }
heapless = { version = "0.7.5", default-features = false }
embedded-hal = "0.2.6"

View file

@ -12,7 +12,6 @@ mod example_common;
use embassy_lora::{sx127x::*, LoraTimer};
use embassy_stm32::{
dbgmcu::Dbgmcu,
dma::NoDma,
exti::ExtiInput,
gpio::{Input, Level, Output, Pull, Speed},
rcc,
@ -45,8 +44,8 @@ async fn main(_spawner: embassy::executor::Spawner, mut p: Peripherals) {
p.PB3,
p.PA7,
p.PA6,
NoDma,
NoDma,
p.DMA1_CH3,
p.DMA1_CH2,
200_000.hz(),
spi::Config::default(),
);
@ -58,15 +57,9 @@ async fn main(_spawner: embassy::executor::Spawner, mut p: Peripherals) {
let ready = Input::new(p.PB4, Pull::Up);
let ready_pin = ExtiInput::new(ready, p.EXTI4);
let radio = Sx127xRadio::new(
spi,
cs,
reset,
ready_pin,
DummySwitch,
&mut embassy::time::Delay,
)
.unwrap();
let radio = Sx127xRadio::new(spi, cs, reset, ready_pin, DummySwitch)
.await
.unwrap();
let region = region::EU868::default().into();
let mut radio_buffer = [0; 256];

View file

@ -11,8 +11,8 @@ embassy-traits = { version = "0.1.0", path = "../../embassy-traits", features =
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["defmt", "stm32wl55jc-cm4", "time-driver-tim2", "memory-x", "subghz", "unstable-pac"] }
embassy-lora = { version = "0.1.0", path = "../../embassy-lora", features = ["stm32wl", "time"] }
lorawan-device = { git = "https://github.com/ivajloip/rust-lorawan.git", rev = "4bff2e0021103adfbccedcbf49dbcd0474adc4b2", default-features = false, features = ["async"] }
lorawan-encoding = { git = "https://github.com/ivajloip/rust-lorawan.git", rev = "4bff2e0021103adfbccedcbf49dbcd0474adc4b2", default-features = false, features = ["default-crypto"] }
lorawan-device = { git = "https://github.com/ivajloip/rust-lorawan.git", rev = "53d2feb43e2f3ddcdc55f0587391b0d3f02d8d93", default-features = false, features = ["async"] }
lorawan-encoding = { git = "https://github.com/ivajloip/rust-lorawan.git", rev = "53d2feb43e2f3ddcdc55f0587391b0d3f02d8d93", default-features = false, features = ["default-crypto"] }
defmt = "0.3"
defmt-rtt = "0.3"