remove first person comments and assert disable state when it's necessary

This commit is contained in:
Guilherme S. Salustiano 2024-02-10 08:09:08 +01:00
parent 9527d1d934
commit 802bdd1af8

View file

@ -64,13 +64,13 @@ impl<'d, T: Instance> Radio<'d, T> {
// that if the packet payload length defined by PCNF1.STATLEN and the LENGTH field in the packet specifies a
// packet larger than MAXLEN, the payload will be truncated at MAXLEN
//
// To simplify the implementation, I'm setting the max length to the maximum value
// and I'm using only the length field to truncate the payload
// To simplify the implementation, It is setted as the maximum value
// and the length of the packet is controlled only by the LENGTH field in the packet
.maxlen()
.bits(255)
// Configure the length of the address field in the packet
// The prefix after the address fields is always appended, so is always 1 byte less than the size of the address
// The base address is truncated from the least significant byte if the BALEN is less than 4
// The base address is truncated from the least significant byte if the BALEN is less than 4
//
// BLE address is always 4 bytes long
.balen()
@ -92,14 +92,14 @@ impl<'d, T: Instance> Radio<'d, T> {
// Before whitening or de-whitening, the shift register should be
// initialized based on the channel index.
.whiteen()
.set_bit() // Enable whitening
.set_bit()
});
// Configure CRC
r.crccnf.write(|w| {
// In BLE the CRC shall be calculated on the PDU of all Link Layer
// packets (even if the packet is encrypted).
// So here we skip the address field
// It skips the address field
w.skipaddr()
.skip()
// In BLE 24-bit CRC = 3 bytes
@ -125,11 +125,18 @@ impl<'d, T: Instance> Radio<'d, T> {
Self { _p: radio }
}
fn state(&self) -> RadioState {
match T::regs().state.read().state().variant() {
Ok(s) => s,
None => unreachable!(),
}
}
#[allow(dead_code)]
fn trace_state(&self) {
let r = T::regs();
match r.state.read().state().variant().unwrap() {
match self.state() {
RadioState::DISABLED => trace!("radio:state:DISABLED"),
RadioState::RX_RU => trace!("radio:state:RX_RU"),
RadioState::RX_IDLE => trace!("radio:state:RX_IDLE"),
@ -142,86 +149,12 @@ impl<'d, T: Instance> Radio<'d, T> {
}
}
async fn trigger_and_wait_end(&mut self, trigger: impl FnOnce() -> ()) {
//self.trace_state();
let r = T::regs();
let s = T::state();
// If the Future is dropped before the end of the transmission
// we need to disable the interrupt and stop the transmission
// to keep the state consistent
let drop = OnDrop::new(|| {
trace!("radio drop: stopping");
r.intenclr.write(|w| w.end().clear());
r.events_end.reset();
r.tasks_stop.write(|w| w.tasks_stop().set_bit());
// The docs don't explicitly mention any event to acknowledge the stop task
// So I guess it's the same as end
while r.events_end.read().events_end().bit_is_clear() {}
trace!("radio drop: stopped");
});
// trace!("radio:enable interrupt");
// Clear some remnant side-effects (I'm unsure if this is needed)
r.events_end.reset();
// Enable interrupt
r.intenset.write(|w| w.end().set());
compiler_fence(Ordering::SeqCst);
// Trigger the transmission
trigger();
// self.trace_state();
// On poll check if interrupt happen
poll_fn(|cx| {
s.end_waker.register(cx.waker());
if r.events_end.read().events_end().bit_is_set() {
// trace!("radio:end");
return core::task::Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
r.events_disabled.reset(); // ACK
// Everthing ends fine, so we can disable the drop
drop.defuse();
}
/// Disable the radio.
fn disable(&mut self) {
let r = T::regs();
compiler_fence(Ordering::SeqCst);
// If is already disabled, do nothing
if !r.state.read().state().is_disabled() {
trace!("radio:disable");
// Trigger the disable task
r.tasks_disable.write(|w| w.tasks_disable().set_bit());
// Wait until the radio is disabled
while r.events_disabled.read().events_disabled().bit_is_clear() {}
compiler_fence(Ordering::SeqCst);
// Acknowledge it
r.events_disabled.reset();
}
}
/// Set the radio mode
///
/// The radio must be disabled before calling this function
pub fn set_mode(&mut self, mode: Mode) {
assert!(self.state() == RadioState::DISABLED);
let r = T::regs();
r.mode.write(|w| w.mode().variant(mode));
@ -235,10 +168,12 @@ impl<'d, T: Instance> Radio<'d, T> {
});
}
/// Set the header size changing the S1 field
/// Set the header size changing the S1's len field
///
/// The radio must be disabled before calling this function
pub fn set_header_expansion(&mut self, use_s1_field: bool) {
assert!(self.state() == RadioState::DISABLED);
let r = T::regs();
// s1 len in bits
@ -268,6 +203,8 @@ impl<'d, T: Instance> Radio<'d, T> {
///
/// The radio must be disabled before calling this function
pub fn set_whitening_init(&mut self, whitening_init: u8) {
assert!(self.state() == RadioState::DISABLED);
let r = T::regs();
r.datawhiteiv.write(|w| unsafe { w.datawhiteiv().bits(whitening_init) });
@ -276,9 +213,11 @@ impl<'d, T: Instance> Radio<'d, T> {
/// Set the central frequency to be used
/// It should be in the range 2400..2500
///
/// The radio must be disabled before calling this function
/// [The radio must be disabled before calling this function](https://devzone.nordicsemi.com/f/nordic-q-a/15829/radio-frequency-change)
pub fn set_frequency(&mut self, frequency: u32) {
assert!(self.state() == RadioState::DISABLED);
assert!(2400 <= frequency && frequency <= 2500);
let r = T::regs();
r.frequency
@ -292,6 +231,8 @@ impl<'d, T: Instance> Radio<'d, T> {
///
/// The radio must be disabled before calling this function
pub fn set_access_address(&mut self, access_address: u32) {
assert!(self.state() == RadioState::DISABLED);
let r = T::regs();
// Configure logical address
@ -309,9 +250,9 @@ impl<'d, T: Instance> Radio<'d, T> {
r.txaddress.write(|w| unsafe { w.txaddress().bits(0) });
// Match on logical address
// For what I understand, this config only filter the packets
// by the address, so only packages send to the previous address
// will finish the reception
// This config only filter the packets by the address,
// so only packages send to the previous address
// will finish the reception (TODO: check the explanation)
r.rxaddresses.write(|w| {
w.addr0()
.enabled()
@ -331,6 +272,8 @@ impl<'d, T: Instance> Radio<'d, T> {
///
/// The radio must be disabled before calling this function
pub fn set_crc_poly(&mut self, crc_poly: u32) {
assert!(self.state() == RadioState::DISABLED);
let r = T::regs();
r.crcpoly.write(|w| unsafe {
@ -351,6 +294,8 @@ impl<'d, T: Instance> Radio<'d, T> {
///
/// The radio must be disabled before calling this function
pub fn set_crc_init(&mut self, crc_init: u32) {
assert!(self.state() == RadioState::DISABLED);
let r = T::regs();
r.crcinit.write(|w| unsafe { w.crcinit().bits(crc_init & 0xFFFFFF) });
@ -360,6 +305,8 @@ impl<'d, T: Instance> Radio<'d, T> {
///
/// The radio must be disabled before calling this function
pub fn set_tx_power(&mut self, tx_power: TxPower) {
assert!(self.state() == RadioState::DISABLED);
let r = T::regs();
r.txpower.write(|w| w.txpower().variant(tx_power));
@ -408,19 +355,83 @@ impl<'d, T: Instance> Radio<'d, T> {
// Initialize the transmission
// trace!("rxen");
r.tasks_rxen.write(|w| w.tasks_rxen().set_bit());
})
.await;
}
// Await until ready
while r.events_ready.read().events_ready().bit_is_clear() {}
async fn trigger_and_wait_end(&mut self, trigger: impl FnOnce()) {
//self.trace_state();
let r = T::regs();
let s = T::state();
// If the Future is dropped before the end of the transmission
// we need to disable the interrupt and stop the transmission
// to keep the state consistent
let drop = OnDrop::new(|| {
trace!("radio drop: stopping");
r.intenclr.write(|w| w.end().clear());
r.events_end.reset();
r.tasks_stop.write(|w| w.tasks_stop().set_bit());
// The docs don't explicitly mention any event to acknowledge the stop task
while r.events_end.read().events_end().bit_is_clear() {}
trace!("radio drop: stopped");
});
// trace!("radio:enable interrupt");
// Clear some remnant side-effects (TODO: check if this is necessary)
r.events_end.reset();
// Enable interrupt
r.intenset.write(|w| w.end().set());
compiler_fence(Ordering::SeqCst);
// Trigger the transmission
trigger();
// self.trace_state();
// On poll check if interrupt happen
poll_fn(|cx| {
s.end_waker.register(cx.waker());
if r.events_end.read().events_end().bit_is_set() {
// trace!("radio:end");
return core::task::Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
r.events_disabled.reset(); // ACK
// Everthing ends fine, so we can disable the drop
drop.defuse();
}
/// Disable the radio
fn disable(&mut self) {
let r = T::regs();
compiler_fence(Ordering::SeqCst);
// If it is already disabled, do nothing
if self.state() != RadioState::DISABLED {
trace!("radio:disable");
// Trigger the disable task
r.tasks_disable.write(|w| w.tasks_disable().set_bit());
// Wait until the radio is disabled
while r.events_disabled.read().events_disabled().bit_is_clear() {}
compiler_fence(Ordering::SeqCst);
// Acknowledge it
r.events_ready.reset();
// trace!("radio:start");
r.tasks_start.write(|w| w.tasks_start().set_bit());
})
.await;
r.events_disabled.reset();
}
}
}