feat/implement ble radio on nrf

This commit is contained in:
Guilherme S. Salustiano 2024-02-07 15:25:07 +01:00
parent 2c5426aa5c
commit 847b8be814
14 changed files with 628 additions and 2 deletions

View file

@ -57,6 +57,9 @@ unstable-pac = []
## Enable GPIO tasks and events
gpiote = []
## Enable radio driver
radio = ["dep:jewel"]
## Use RTC1 as the time driver for `embassy-time`, with a tick rate of 32.768khz
time-driver-rtc1 = ["_time-driver"]
@ -150,6 +153,8 @@ embedded-storage-async = "0.4.0"
cfg-if = "1.0.0"
document-features = "0.2.7"
jewel = { version = "0.1.0", git = "https://github.com/jewel-rs/jewel", optional = true }
nrf51-pac = { version = "0.12.0", optional = true }
nrf52805-pac = { version = "0.12.0", optional = true }
nrf52810-pac = { version = "0.12.0", optional = true }

View file

@ -129,6 +129,9 @@ embassy_hal_internal::peripherals! {
// QDEC
QDEC,
// RADIO
RADIO,
}
impl_uarte!(UARTE0, UARTE0, UARTE0_UART0);
@ -209,6 +212,9 @@ impl_ppi_channel!(PPI_CH31, 31 => static);
impl_saadc_input!(P0_04, ANALOG_INPUT2);
impl_saadc_input!(P0_05, ANALOG_INPUT3);
#[cfg(feature = "radio")]
impl_radio!(RADIO, RADIO, RADIO);
embassy_hal_internal::interrupt_mod!(
POWER_CLOCK,
RADIO,

View file

@ -135,6 +135,9 @@ embassy_hal_internal::peripherals! {
// PDM
PDM,
// Radio
RADIO,
}
impl_uarte!(UARTE0, UARTE0, UARTE0_UART0);
@ -235,6 +238,9 @@ impl_saadc_input!(P0_29, ANALOG_INPUT5);
impl_saadc_input!(P0_30, ANALOG_INPUT6);
impl_saadc_input!(P0_31, ANALOG_INPUT7);
#[cfg(feature = "radio")]
impl_radio!(RADIO, RADIO, RADIO);
embassy_hal_internal::interrupt_mod!(
POWER_CLOCK,
RADIO,

View file

@ -135,6 +135,9 @@ embassy_hal_internal::peripherals! {
// PDM
PDM,
// Radio
RADIO,
}
impl_uarte!(UARTE0, UARTE0, UARTE0_UART0);
@ -237,6 +240,9 @@ impl_saadc_input!(P0_29, ANALOG_INPUT5);
impl_saadc_input!(P0_30, ANALOG_INPUT6);
impl_saadc_input!(P0_31, ANALOG_INPUT7);
#[cfg(feature = "radio")]
impl_radio!(RADIO, RADIO, RADIO);
embassy_hal_internal::interrupt_mod!(
POWER_CLOCK,
RADIO,

View file

@ -130,6 +130,9 @@ embassy_hal_internal::peripherals! {
// QDEC
QDEC,
// Radio
RADIO,
}
impl_usb!(USBD, USBD, USBD);
@ -224,6 +227,9 @@ impl_ppi_channel!(PPI_CH29, 29 => static);
impl_ppi_channel!(PPI_CH30, 30 => static);
impl_ppi_channel!(PPI_CH31, 31 => static);
#[cfg(feature = "radio")]
impl_radio!(RADIO, RADIO, RADIO);
embassy_hal_internal::interrupt_mod!(
POWER_CLOCK,
RADIO,

View file

@ -150,6 +150,9 @@ embassy_hal_internal::peripherals! {
// PDM
PDM,
// Radio
RADIO,
}
impl_uarte!(UARTE0, UARTE0, UARTE0_UART0);
@ -264,6 +267,9 @@ impl_saadc_input!(P0_31, ANALOG_INPUT7);
impl_i2s!(I2S, I2S, I2S);
#[cfg(feature = "radio")]
impl_radio!(RADIO, RADIO, RADIO);
embassy_hal_internal::interrupt_mod!(
POWER_CLOCK,
RADIO,

View file

@ -170,6 +170,9 @@ embassy_hal_internal::peripherals! {
// I2S
I2S,
// Radio
RADIO,
}
impl_usb!(USBD, USBD, USBD);
@ -306,6 +309,9 @@ impl_saadc_input!(P0_31, ANALOG_INPUT7);
impl_i2s!(I2S, I2S, I2S);
#[cfg(feature = "radio")]
impl_radio!(RADIO, RADIO, RADIO);
embassy_hal_internal::interrupt_mod!(
POWER_CLOCK,
RADIO,

View file

@ -173,6 +173,9 @@ embassy_hal_internal::peripherals! {
// I2S
I2S,
// Radio
RADIO,
}
impl_usb!(USBD, USBD, USBD);
@ -311,6 +314,9 @@ impl_saadc_input!(P0_31, ANALOG_INPUT7);
impl_i2s!(I2S, I2S, I2S);
#[cfg(feature = "radio")]
impl_radio!(RADIO, RADIO, RADIO);
embassy_hal_internal::interrupt_mod!(
POWER_CLOCK,
RADIO,

View file

@ -248,6 +248,9 @@ embassy_hal_internal::peripherals! {
P1_13,
P1_14,
P1_15,
// Radio
RADIO,
}
impl_uarte!(SERIAL0, UARTE0, SERIAL0);
@ -345,6 +348,9 @@ impl_ppi_channel!(PPI_CH29, 29 => configurable);
impl_ppi_channel!(PPI_CH30, 30 => configurable);
impl_ppi_channel!(PPI_CH31, 31 => configurable);
#[cfg(feature = "radio")]
impl_radio!(RADIO, RADIO, RADIO);
embassy_hal_internal::interrupt_mod!(
CLOCK_POWER,
RADIO,

View file

@ -45,6 +45,12 @@ pub mod buffered_uarte;
pub mod gpio;
#[cfg(feature = "gpiote")]
pub mod gpiote;
#[cfg(feature = "radio")]
pub mod radio;
#[cfg(all(feature = "radio", feature = "_nrf9160"))]
compile_error!("feature `radio` is not valid for nRF91 series chips.");
#[cfg(any(feature = "nrf52832", feature = "nrf52833", feature = "nrf52840"))]
pub mod i2s;
pub mod nvmc;

View file

@ -0,0 +1,432 @@
//! Radio driver implementation focused on Bluetooth Low-Energy transmission.
//!
//! The radio can calculate the CRC, perform data whitening,
//! automatically send the right preamble.
//! Most of the configuration is done automatically when you choose the mode and this driver.
//!
//! Some configuration can just be done when de device is disabled,
//! and the configuration varies depending if is a transmitter or a receiver.
//! Because of that we have a state machine to keep track of the state of the radio.
//! The Radio is the disable radio which configure the common parameters between
//! the bluetooth protocols, like the package format, the CRC and the whitening.
//! The TxRadio radio enable and configured as a transmitter with the specific parameters.
use core::future::poll_fn;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use jewel::phy::{
AdvertisingChannel, Channel, ChannelTrait, HeaderSize, Mode, Radio as BleRadio, ADV_ADDRESS, ADV_CRC_INIT,
CRC_POLY, MAX_PDU_LENGTH,
};
use pac::radio::mode::MODE_A as PacMode;
use pac::radio::pcnf0::PLEN_A as PreambleLength;
// Re-export SVD variants to allow user to directly set values.
pub use pac::radio::{state::STATE_A as RadioState, txpower::TXPOWER_A as TxPower};
use crate::interrupt::typelevel::Interrupt;
use crate::radio::*;
use crate::util::slice_in_ram_or;
/// UART error.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
/// Buffer was too long.
BufferTooLong,
/// Buffer was to short.
BufferTooShort,
/// The buffer is not in data RAM. It's most likely in flash, and nRF's DMA cannot access flash.
BufferNotInRAM,
}
/// Radio driver.
pub struct Radio<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Radio<'d, T> {
/// Create a new radio driver.
pub fn new(
radio: impl Peripheral<P = T> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
) -> Self {
// From 5.4.1 of the nRF52840 Product Specification:
// > The HFXO must be running to use the RADIO or the calibration mechanism associated with the 32.768 kHz RC oscillator.
// Currently the jewel crate don't implement the calibration mechanism, so we need to ensure that the HFXO is running
utils::check_xtal();
into_ref!(radio);
let r = T::regs();
r.pcnf1.write(|w| unsafe {
// It is 0 bytes long in a standard BLE packet
w.statlen()
.bits(0)
// MaxLen configures the maximum packet payload plus add-on size in
// number of bytes that can be transmitted or received by the RADIO. This feature can be used to ensure
// that the RADIO does not overwrite, or read beyond, the RAM assigned to the packet payload. This means
// that if the packet payload length defined by PCNF1.STATLEN and the LENGTH field in the packet specifies a
// packet larger than MAXLEN, the payload will be truncated at MAXLEN
//
// To simplify the implementation, I'm setting the max length to the maximum value
// and I'm using only the length field to truncate the payload
.maxlen()
.bits(255)
// Configure the length of the address field in the packet
// The prefix after the address fields is always appended, so is always 1 byte less than the size of the address
// The base address is truncated from the least significant byte if the BALEN is less than 4
//
// BLE address is always 4 bytes long
.balen()
.bits(3) // 3 bytes base address (+ 1 prefix);
// Configure the endianess
// For BLE is always little endian (LSB first)
.endian()
.little()
// Data whitening is used to avoid long sequences of zeros or
// ones, e.g., 0b0000000 or 0b1111111, in the data bit stream.
// The whitener and de-whitener are defined the same way,
// using a 7-bit linear feedback shift register with the
// polynomial x7 + x4 + 1.
//
// In BLE Whitening shall be applied on the PDU and CRC of all
// Link Layer packets and is performed after the CRC generation
// in the transmitter. No other parts of the packets are whitened.
// De-whitening is performed before the CRC checking in the receiver
// Before whitening or de-whitening, the shift register should be
// initialized based on the channel index.
.whiteen()
.set_bit() // Enable whitening
});
// Configure CRC
r.crccnf.write(|w| {
// In BLE the CRC shall be calculated on the PDU of all Link Layer
// packets (even if the packet is encrypted).
// So here we skip the address field
w.skipaddr()
.skip()
// In BLE 24-bit CRC = 3 bytes
.len()
.three()
});
r.crcpoly.write(|w| unsafe {
// Configure the CRC polynomial
// Each term in the CRC polynomial is mapped to a bit in this
// register which index corresponds to the term's exponent.
// The least significant term/bit is hard-wired internally to
// 1, and bit number 0 of the register content is ignored by
// the hardware. The following example is for an 8 bit CRC
// polynomial: x8 + x7 + x3 + x2 + 1 = 1 1000 1101 .
w.crcpoly().bits(CRC_POLY & 0xFFFFFF)
});
// The CRC initial value varies depending of the PDU type
// Ch map between 2400 MHZ .. 2500 MHz
// All modes use this range
r.frequency.write(|w| w.map().default());
// Configure shortcuts to simplify and speed up sending and receiving packets.
r.shorts.write(|w| {
// start transmission/recv immediately after ramp-up
// disable radio when transmission/recv is done
w.ready_start().enabled().end_disable().enabled()
});
// Enable NVIC interrupt
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
let mut radio = Self { _p: radio };
// set defaults
radio.set_mode(Mode::Ble1mbit);
radio.set_tx_power(0);
radio.set_header_size(HeaderSize::TwoBytes);
radio.set_access_address(ADV_ADDRESS);
radio.set_crc_init(ADV_CRC_INIT);
radio.set_channel(AdvertisingChannel::Ch39.into());
radio
}
#[allow(dead_code)]
fn trace_state(&self) {
let r = T::regs();
match r.state.read().state().variant().unwrap() {
RadioState::DISABLED => trace!("radio:state:DISABLED"),
RadioState::RX_RU => trace!("radio:state:RX_RU"),
RadioState::RX_IDLE => trace!("radio:state:RX_IDLE"),
RadioState::RX => trace!("radio:state:RX"),
RadioState::RX_DISABLE => trace!("radio:state:RX_DISABLE"),
RadioState::TX_RU => trace!("radio:state:TX_RU"),
RadioState::TX_IDLE => trace!("radio:state:TX_IDLE"),
RadioState::TX => trace!("radio:state:TX"),
RadioState::TX_DISABLE => trace!("radio:state:TX_DISABLE"),
}
}
async fn trigger_and_wait_end(&mut self, trigger: impl FnOnce() -> ()) {
//self.trace_state();
let r = T::regs();
let s = T::state();
// If the Future is dropped before the end of the transmission
// we need to disable the interrupt and stop the transmission
// to keep the state consistent
let drop = OnDrop::new(|| {
trace!("radio drop: stopping");
r.intenclr.write(|w| w.end().clear());
r.events_end.reset();
r.tasks_stop.write(|w| w.tasks_stop().set_bit());
// The docs don't explicitly mention any event to acknowledge the stop task
// So I guess it's the same as end
while r.events_end.read().events_end().bit_is_clear() {}
trace!("radio drop: stopped");
});
/* Config interrupt */
// trace!("radio:enable interrupt");
// Clear some remnant side-effects (I'm unsure if this is needed)
r.events_end.reset();
// Enable interrupt
r.intenset.write(|w| w.end().set());
compiler_fence(Ordering::SeqCst);
// Trigger the transmission
trigger();
// self.trace_state();
// On poll check if interrupt happen
poll_fn(|cx| {
s.end_waker.register(cx.waker());
if r.events_end.read().events_end().bit_is_set() {
// trace!("radio:end");
return core::task::Poll::Ready(());
}
Poll::Pending
})
.await;
compiler_fence(Ordering::SeqCst);
r.events_disabled.reset(); // ACK
// Everthing ends fine, so we can disable the drop
drop.defuse();
}
/// Disable the radio.
fn disable(&mut self) {
let r = T::regs();
compiler_fence(Ordering::SeqCst);
// If is already disabled, do nothing
if !r.state.read().state().is_disabled() {
trace!("radio:disable");
// Trigger the disable task
r.tasks_disable.write(|w| w.tasks_disable().set_bit());
// Wait until the radio is disabled
while r.events_disabled.read().events_disabled().bit_is_clear() {}
compiler_fence(Ordering::SeqCst);
// Acknowledge it
r.events_disabled.reset();
}
}
}
impl<'d, T: Instance> BleRadio for Radio<'d, T> {
type Error = Error;
fn set_mode(&mut self, mode: Mode) {
let r = T::regs();
r.mode.write(|w| {
w.mode().variant(match mode {
Mode::Ble1mbit => PacMode::BLE_1MBIT,
//Mode::Ble2mbit => PacMode::BLE_2MBIT,
})
});
r.pcnf0.write(|w| {
w.plen().variant(match mode {
Mode::Ble1mbit => PreambleLength::_8BIT,
//Mode::Ble2mbit => PreambleLength::_16BIT,
})
});
}
fn set_header_size(&mut self, header_size: HeaderSize) {
let r = T::regs();
let s1len: u8 = match header_size {
HeaderSize::TwoBytes => 0,
HeaderSize::ThreeBytes => 8, // bits
};
r.pcnf0.write(|w| unsafe {
w
// Configure S0 to 1 byte length, this will represent the Data/Adv header flags
.s0len()
.set_bit()
// Configure the length (in bits) field to 1 byte length, this will represent the length of the payload
// and also be used to know how many bytes to read/write from/to the buffer
.lflen()
.bits(8)
// Configure the lengh (in bits) of bits in the S1 field. It could be used to represent the CTEInfo for data packages in BLE.
.s1len()
.bits(s1len)
});
}
fn set_channel(&mut self, channel: Channel) {
let r = T::regs();
r.frequency
.write(|w| unsafe { w.frequency().bits((channel.central_frequency() - 2400) as u8) });
r.datawhiteiv
.write(|w| unsafe { w.datawhiteiv().bits(channel.whitening_init()) });
}
fn set_access_address(&mut self, access_address: u32) {
let r = T::regs();
// Configure logical address
// The byte ordering on air is always least significant byte first for the address
// So for the address 0xAA_BB_CC_DD, the address on air will be DD CC BB AA
// The package order is BASE, PREFIX so BASE=0xBB_CC_DD and PREFIX=0xAA
r.prefix0
.write(|w| unsafe { w.ap0().bits((access_address >> 24) as u8) });
// The base address is truncated from the least significant byte (because the BALEN is less than 4)
// So we need to shift the address to the right
r.base0.write(|w| unsafe { w.bits(access_address << 8) });
// Don't match tx address
r.txaddress.write(|w| unsafe { w.txaddress().bits(0) });
// Match on logical address
// For what I understand, this config only filter the packets
// by the address, so only packages send to the previous address
// will finish the reception
r.rxaddresses.write(|w| {
w.addr0()
.enabled()
.addr1()
.enabled()
.addr2()
.enabled()
.addr3()
.enabled()
.addr4()
.enabled()
});
}
fn set_crc_init(&mut self, crc_init: u32) {
let r = T::regs();
r.crcinit.write(|w| unsafe { w.crcinit().bits(crc_init & 0xFFFFFF) });
}
fn set_tx_power(&mut self, power_db: i8) {
let r = T::regs();
let tx_power: TxPower = match power_db {
8..=i8::MAX => TxPower::POS8D_BM,
7 => TxPower::POS7D_BM,
6 => TxPower::POS6D_BM,
5 => TxPower::POS5D_BM,
4 => TxPower::POS4D_BM,
3 => TxPower::POS3D_BM,
1..=2 => TxPower::POS2D_BM,
-3..=0 => TxPower::_0D_BM,
-7..=-4 => TxPower::NEG4D_BM,
-11..=-8 => TxPower::NEG8D_BM,
-15..=-12 => TxPower::NEG12D_BM,
-19..=-16 => TxPower::NEG16D_BM,
-29..=-20 => TxPower::NEG20D_BM,
-39..=-30 => TxPower::NEG30D_BM,
i8::MIN..=-40 => TxPower::NEG40D_BM,
};
r.txpower.write(|w| w.txpower().variant(tx_power));
}
fn set_buffer(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
// Because we are serializing the buffer, we should always have the buffer in RAM
slice_in_ram_or(buffer, Error::BufferNotInRAM)?;
if buffer.len() > MAX_PDU_LENGTH {
return Err(Error::BufferTooLong);
}
let r = T::regs();
// Here we are considering that the length of the packet is
// correctly set in the buffer, otherwise we will sending
// unowned regions of memory
let ptr = buffer.as_ptr();
// Configure the payload
r.packetptr.write(|w| unsafe { w.bits(ptr as u32) });
Ok(())
}
/// Send packet
async fn transmit(&mut self) {
let r = T::regs();
self.trigger_and_wait_end(move || {
// Initialize the transmission
// trace!("txen");
r.tasks_txen.write(|w| w.tasks_txen().set_bit());
})
.await;
}
/// Send packet
async fn receive(&mut self) {
let r = T::regs();
self.trigger_and_wait_end(move || {
// Initialize the transmission
// trace!("rxen");
r.tasks_rxen.write(|w| w.tasks_rxen().set_bit());
// Await until ready
while r.events_ready.read().events_ready().bit_is_clear() {}
compiler_fence(Ordering::SeqCst);
// Acknowledge it
r.events_ready.reset();
// trace!("radio:start");
r.tasks_start.write(|w| w.tasks_start().set_bit());
})
.await;
}
}
impl<'d, T: Instance> Drop for Radio<'d, T> {
fn drop(&mut self) {
self.disable();
}
}

View file

@ -0,0 +1,89 @@
//! Integrated 2.4 GHz Radio
//!
//! The 2.4 GHz radio transceiver is compatible with multiple radio standards
//! such as 1Mbps, 2Mbps and Long Range Bluetooth Low Energy.
#![macro_use]
/// Bluetooth Low Energy Radio driver.
pub mod ble;
use core::marker::PhantomData;
use crate::{interrupt, pac, Peripheral};
/// Interrupt handler
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let r = T::regs();
let s = T::state();
if r.events_end.read().events_end().bit_is_set() {
s.end_waker.wake();
r.intenclr.write(|w| w.end().clear());
}
}
}
pub(crate) mod utils {
use super::*;
// Check if the HFCLK is XTAL is enabled
pub fn check_xtal() {
// safe: only reading the value
let is_xtal = unsafe {
let r = &*pac::CLOCK::ptr();
r.hfclkstat.read().src().is_xtal()
};
assert!(is_xtal, "HFCLK must be XTAL");
}
}
pub(crate) mod sealed {
use embassy_sync::waitqueue::AtomicWaker;
pub struct State {
/// end packet transmission or reception
pub end_waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
end_waker: AtomicWaker::new(),
}
}
}
pub trait Instance {
fn regs() -> &'static crate::pac::radio::RegisterBlock;
fn state() -> &'static State;
}
}
macro_rules! impl_radio {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::radio::sealed::Instance for peripherals::$type {
fn regs() -> &'static pac::radio::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
}
fn state() -> &'static crate::radio::sealed::State {
static STATE: crate::radio::sealed::State = crate::radio::sealed::State::new();
&STATE
}
}
impl crate::radio::Instance for peripherals::$type {
type Interrupt = crate::interrupt::typelevel::$irq;
}
};
}
/// Radio peripheral instance.
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static + Send {
/// Interrupt for this peripheral.
type Interrupt: interrupt::typelevel::Interrupt;
}

View file

@ -8,8 +8,8 @@ license = "MIT OR Apache-2.0"
embassy-futures = { version = "0.1.0", path = "../../embassy-futures" }
embassy-sync = { version = "0.5.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.5.0", path = "../../embassy-executor", features = ["task-arena-size-32768", "arch-cortex-m", "executor-thread", "executor-interrupt", "defmt", "integrated-timers"] }
embassy-time = { version = "0.3.0", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime"] }
embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["defmt", "nrf52840", "time-driver-rtc1", "gpiote", "unstable-pac", "time"] }
embassy-time = { version = "0.3.0", features = ["defmt", "defmt-timestamp-uptime"] }
embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["defmt", "nrf52840", "time-driver-rtc1", "gpiote", "unstable-pac", "time", "radio"]}
embassy-net = { version = "0.4.0", path = "../../embassy-net", features = ["defmt", "tcp", "dhcpv4", "medium-ethernet"] }
embassy-usb = { version = "0.1.0", path = "../../embassy-usb", features = ["defmt"] }
embedded-io = { version = "0.6.0", features = ["defmt-03"] }
@ -35,6 +35,10 @@ embedded-hal-async = { version = "1.0" }
embedded-hal-bus = { version = "0.1", features = ["async"] }
num-integer = { version = "0.1.45", default-features = false }
microfft = "0.5.0"
jewel = { version = "0.1.0", git = "https://github.com/jewel-rs/jewel"}
[patch.crates-io]
embassy-time = { version = "0.3.0", path = "../../embassy-time"}
[profile.release]
debug = 2

View file

@ -0,0 +1,42 @@
#![no_std]
#![no_main]
use defmt::{info, unwrap};
use embassy_executor::Spawner;
use embassy_nrf::{bind_interrupts, peripherals, radio};
use embassy_time::Timer;
use jewel::phy::Radio;
use {defmt_rtt as _, panic_probe as _};
bind_interrupts!(struct Irqs {
RADIO => radio::InterruptHandler<peripherals::RADIO>;
});
// For a high-level API look on jewel examples
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let mut config = embassy_nrf::config::Config::default();
config.hfclk_source = embassy_nrf::config::HfclkSource::ExternalXtal;
let p = embassy_nrf::init(config);
info!("Starting BLE radio");
let mut radio = radio::ble::Radio::new(p.RADIO, Irqs);
let pdu = [
0x46u8, // ADV_NONCONN_IND, Random address,
0x18, // Length of payload
0x27, 0xdc, 0xd0, 0xe8, 0xe1, 0xff, // Adress
0x02, 0x01, 0x06, // Flags
0x03, 0x03, 0x09, 0x18, // Complete list of 16-bit UUIDs available
0x0A, 0x09, // Length, Type: Device name
b'H', b'e', b'l', b'l', b'o', b'R', b'u', b's', b't',
];
unwrap!(radio.set_buffer(pdu.as_ref()));
loop {
info!("Sending packet");
radio.transmit().await;
Timer::after_millis(500).await;
}
}