First commit

This commit is contained in:
Dario Nieuwenhuis 2020-09-22 18:03:43 +02:00
commit 9a57deef9b
43 changed files with 3202 additions and 0 deletions

27
.cargo/config Normal file
View file

@ -0,0 +1,27 @@
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
runner = "probe-run --chip nRF52840_xxAA --defmt"
rustflags = [
# LLD (shipped with the Rust toolchain) is used as the default linker
"-C", "link-arg=--nmagic",
"-C", "link-arg=-Tlink.x",
"-C", "link-arg=-Tdefmt.x",
# if you run into problems with LLD switch to the GNU linker by commenting out
# this line
# "-C", "linker=arm-none-eabi-ld",
# if you need to link to pre-compiled C libraries provided by a C toolchain
# use GCC as the linker by commenting out both lines above and then
# uncommenting the three lines below
# "-C", "linker=arm-none-eabi-gcc",
# "-C", "link-arg=-Wl,-Tlink.x",
# "-C", "link-arg=-nostartfiles",
]
[build]
# Pick ONE of these compilation targets
# target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+
# target = "thumbv7m-none-eabi" # Cortex-M3
# target = "thumbv7em-none-eabi" # Cortex-M4 and Cortex-M7 (no FPU)
target = "thumbv7em-none-eabihf" # Cortex-M4F and Cortex-M7F (with FPU)

2
.gitignore vendored Normal file
View file

@ -0,0 +1,2 @@
/target
Cargo.lock

12
.vscode/settings.json vendored Normal file
View file

@ -0,0 +1,12 @@
{
"editor.formatOnSave": true,
"rust-analyzer.cargo.allFeatures": false,
"rust-analyzer.checkOnSave.allFeatures": false,
"rust-analyzer.cargo.target": "thumbv7em-none-eabihf",
"rust-analyzer.checkOnSave.allTargets": false,
"files.watcherExclude": {
"**/.git/objects/**": true,
"**/.git/subtree-cache/**": true,
"**/target/**": true
}
}

46
Cargo.toml Normal file
View file

@ -0,0 +1,46 @@
[workspace]
members = [
"embassy",
"embassy-nrf",
"examples",
]
[patch.crates-io]
panic-probe = { git = "https://github.com/knurling-rs/probe-run", branch="main" }
defmt-rtt = { git = "https://github.com/knurling-rs/defmt", branch="cursed-symbol-names-linkers-must-repent-for-their-sins" }
defmt = { git = "https://github.com/knurling-rs/defmt", branch="cursed-symbol-names-linkers-must-repent-for-their-sins" }
static-executor = { git = "https://github.com/Dirbaio/static-executor" }
static-executor-cortex-m = { git = "https://github.com/Dirbaio/static-executor" }
[profile.dev]
codegen-units = 1
debug = 2
debug-assertions = true
incremental = false
opt-level = 3
overflow-checks = true
[profile.release]
codegen-units = 1
debug = 2
debug-assertions = false
incremental = false
lto = "fat"
opt-level = 3
overflow-checks = false
# do not optimize proc-macro crates = faster builds from scratch
[profile.dev.build-override]
codegen-units = 8
debug = false
debug-assertions = false
opt-level = 0
overflow-checks = false
[profile.release.build-override]
codegen-units = 8
debug = false
debug-assertions = false
opt-level = 0
overflow-checks = false

201
LICENSE-APACHE Normal file
View file

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

25
LICENSE-MIT Normal file
View file

@ -0,0 +1,25 @@
Copyright (c) 2020 Dario Nieuwenhuis
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

30
README.md Normal file
View file

@ -0,0 +1,30 @@
# Embassy
Embassy is a project to make async/await a first-class option for embedded development.
The `embassy` crate defines some traits.
- `embassy::io`: Traits for byte-stream IO, essentially `no_std` compatible versions of `futures::io`.
- `embassy::flash`: Trait for an async flash device.
- More traits for SPI, I2C, UART async HAL coming soon.
The `embassy-nrf` crate contains implementations for nRF 52 series SoCs.
- `uarte`: UARTE driver implementing `AsyncBufRead` and `AsyncWrite`.
- `qspi`: QSPI driver implementing `Flash`.
Currently Embassy requires a recent nightly, mainly for `generic_associated_types` (for trait funcs returning futures) and `type_alias_impl_trait` (for returning futures implemented with `async{}` blocks). Stable support is a non-goal.
## Why the name?
EMBedded ASYnc.
## License
This work is licensed under either of
- Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or
http://www.apache.org/licenses/LICENSE-2.0)
- MIT license ([LICENSE-MIT](LICENSE-MIT) or http://opensource.org/licenses/MIT)
at your option.

38
embassy-nrf/Cargo.toml Normal file
View file

@ -0,0 +1,38 @@
[package]
name = "embassy-nrf"
version = "0.1.0"
authors = ["Dario Nieuwenhuis <dirbaio@dirbaio.net>"]
edition = "2018"
[features]
default = [
"defmt-default",
]
defmt-default = []
defmt-trace = []
defmt-debug = []
defmt-info = []
defmt-warn = []
defmt-error = []
nrf52810 = ["nrf52810-pac"]
nrf52811 = ["nrf52811-pac"]
nrf52832 = ["nrf52832-pac"]
nrf52833 = ["nrf52833-pac"]
nrf52840 = ["nrf52840-pac"]
[dependencies]
embassy = { version = "0.1.0", path = "../embassy" }
cortex-m-rt = "0.6.12"
cortex-m = { version = "0.6.3" }
embedded-hal = { version = "0.2.4" }
nrf52840-hal = { version = "0.11.0" }
bare-metal = { version = "0.2.0", features = ["const-fn"] }
defmt = "0.1.0"
nrf52810-pac = { version = "0.9.0", optional = true }
nrf52811-pac = { version = "0.9.0", optional = true }
nrf52832-pac = { version = "0.9.0", optional = true }
nrf52833-pac = { version = "0.9.0", optional = true }
nrf52840-pac = { version = "0.9.0", optional = true }

View file

@ -0,0 +1,131 @@
//! Interrupt management
//!
//! This module implements an API for managing interrupts compatible with
//! nrf_softdevice::interrupt. Intended for switching between the two at compile-time.
use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
use crate::pac::{NVIC, NVIC_PRIO_BITS};
// Re-exports
pub use crate::pac::Interrupt;
pub use crate::pac::Interrupt::*; // needed for cortex-m-rt #[interrupt]
pub use bare_metal::{CriticalSection, Mutex};
#[derive(defmt::Format, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)]
#[repr(u8)]
pub enum Priority {
Level0 = 0,
Level1 = 1,
Level2 = 2,
Level3 = 3,
Level4 = 4,
Level5 = 5,
Level6 = 6,
Level7 = 7,
}
impl Priority {
#[inline]
fn to_nvic(self) -> u8 {
(self as u8) << (8 - NVIC_PRIO_BITS)
}
#[inline]
fn from_nvic(priority: u8) -> Self {
match priority >> (8 - NVIC_PRIO_BITS) {
0 => Self::Level0,
1 => Self::Level1,
2 => Self::Level2,
3 => Self::Level3,
4 => Self::Level4,
5 => Self::Level5,
6 => Self::Level6,
7 => Self::Level7,
_ => unreachable!(),
}
}
}
static CS_FLAG: AtomicBool = AtomicBool::new(false);
static mut CS_MASK: [u32; 2] = [0; 2];
#[inline]
pub fn free<F, R>(f: F) -> R
where
F: FnOnce(&CriticalSection) -> R,
{
unsafe {
// TODO: assert that we're in privileged level
// Needed because disabling irqs in non-privileged level is a noop, which would break safety.
let primask: u32;
asm!("mrs {}, PRIMASK", out(reg) primask);
asm!("cpsid i");
// Prevent compiler from reordering operations inside/outside the critical section.
compiler_fence(Ordering::SeqCst);
let r = f(&CriticalSection::new());
compiler_fence(Ordering::SeqCst);
if primask & 1 == 0 {
asm!("cpsie i");
}
r
}
}
#[inline]
pub fn enable(irq: Interrupt) {
unsafe {
NVIC::unmask(irq);
}
}
#[inline]
pub fn disable(irq: Interrupt) {
NVIC::mask(irq);
}
#[inline]
pub fn is_active(irq: Interrupt) -> bool {
NVIC::is_active(irq)
}
#[inline]
pub fn is_enabled(irq: Interrupt) -> bool {
NVIC::is_enabled(irq)
}
#[inline]
pub fn is_pending(irq: Interrupt) -> bool {
NVIC::is_pending(irq)
}
#[inline]
pub fn pend(irq: Interrupt) {
NVIC::pend(irq)
}
#[inline]
pub fn unpend(irq: Interrupt) {
NVIC::unpend(irq)
}
#[inline]
pub fn get_priority(irq: Interrupt) -> Priority {
Priority::from_nvic(NVIC::get_priority(irq))
}
#[inline]
pub fn set_priority(irq: Interrupt, prio: Priority) {
unsafe {
cortex_m::peripheral::Peripherals::steal()
.NVIC
.set_priority(irq, prio.to_nvic())
}
}

43
embassy-nrf/src/lib.rs Normal file
View file

@ -0,0 +1,43 @@
#![no_std]
#![feature(generic_associated_types)]
#![feature(asm)]
#![feature(type_alias_impl_trait)]
#[cfg(not(any(
feature = "nrf52810",
feature = "nrf52811",
feature = "nrf52832",
feature = "nrf52833",
feature = "nrf52840",
)))]
compile_error!("No chip feature activated. You must activate exactly one of the following features: nrf52810, nrf52811, nrf52832, nrf52833, nrf52840");
#[cfg(any(
all(feature = "nrf52810", feature = "nrf52811"),
all(feature = "nrf52810", feature = "nrf52832"),
all(feature = "nrf52810", feature = "nrf52833"),
all(feature = "nrf52810", feature = "nrf52840"),
all(feature = "nrf52811", feature = "nrf52832"),
all(feature = "nrf52811", feature = "nrf52833"),
all(feature = "nrf52811", feature = "nrf52840"),
all(feature = "nrf52832", feature = "nrf52833"),
all(feature = "nrf52832", feature = "nrf52840"),
all(feature = "nrf52833", feature = "nrf52840"),
))]
compile_error!("Multile chip features activated. You must activate exactly one of the following features: nrf52810, nrf52811, nrf52832, nrf52833, nrf52840");
#[cfg(feature = "nrf52810")]
pub use nrf52810_pac as pac;
#[cfg(feature = "nrf52811")]
pub use nrf52811_pac as pac;
#[cfg(feature = "nrf52832")]
pub use nrf52832_pac as pac;
#[cfg(feature = "nrf52833")]
pub use nrf52833_pac as pac;
#[cfg(feature = "nrf52840")]
pub use nrf52840_pac as pac;
pub mod interrupt;
pub mod qspi;
pub mod uarte;
pub use cortex_m_rt::interrupt;

322
embassy-nrf/src/qspi.rs Normal file
View file

@ -0,0 +1,322 @@
use crate::pac::{Interrupt, QSPI};
use core::future::Future;
use nrf52840_hal::gpio::{Output, Pin as GpioPin, Port as GpioPort, PushPull};
pub use crate::pac::qspi::ifconfig0::ADDRMODE_A as AddressMode;
pub use crate::pac::qspi::ifconfig0::PPSIZE_A as WritePageSize;
pub use crate::pac::qspi::ifconfig0::READOC_A as ReadOpcode;
pub use crate::pac::qspi::ifconfig0::WRITEOC_A as WriteOpcode;
// TODO
// - config:
// - 32bit address mode
// - SPI freq
// - SPI sck delay
// - Deep power down mode (DPM)
// - SPI mode 3
// - activate/deactivate
// - set gpio in high drive
use embassy::flash::{Error, Flash};
use embassy::util::{DropBomb, Signal};
use crate::interrupt;
pub struct Pins {
pub sck: GpioPin<Output<PushPull>>,
pub csn: GpioPin<Output<PushPull>>,
pub io0: GpioPin<Output<PushPull>>,
pub io1: GpioPin<Output<PushPull>>,
pub io2: Option<GpioPin<Output<PushPull>>>,
pub io3: Option<GpioPin<Output<PushPull>>>,
}
pub struct Config {
pub pins: Pins,
pub xip_offset: u32,
pub read_opcode: ReadOpcode,
pub write_opcode: WriteOpcode,
pub write_page_size: WritePageSize,
}
pub struct Qspi {
inner: QSPI,
}
fn port_bit(port: GpioPort) -> bool {
match port {
GpioPort::Port0 => false,
GpioPort::Port1 => true,
}
}
impl Qspi {
pub fn new(qspi: QSPI, config: Config) -> Self {
qspi.psel.sck.write(|w| {
let pin = &config.pins.sck;
let w = unsafe { w.pin().bits(pin.pin()) };
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
});
qspi.psel.csn.write(|w| {
let pin = &config.pins.csn;
let w = unsafe { w.pin().bits(pin.pin()) };
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
});
qspi.psel.io0.write(|w| {
let pin = &config.pins.io0;
let w = unsafe { w.pin().bits(pin.pin()) };
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
});
qspi.psel.io1.write(|w| {
let pin = &config.pins.io1;
let w = unsafe { w.pin().bits(pin.pin()) };
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
});
qspi.psel.io2.write(|w| {
if let Some(ref pin) = config.pins.io2 {
let w = unsafe { w.pin().bits(pin.pin()) };
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
} else {
w.connect().disconnected()
}
});
qspi.psel.io3.write(|w| {
if let Some(ref pin) = config.pins.io3 {
let w = unsafe { w.pin().bits(pin.pin()) };
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
} else {
w.connect().disconnected()
}
});
qspi.ifconfig0.write(|w| {
let w = w.addrmode().variant(AddressMode::_24BIT);
let w = w.dpmenable().disable();
let w = w.ppsize().variant(config.write_page_size);
let w = w.readoc().variant(config.read_opcode);
let w = w.writeoc().variant(config.write_opcode);
w
});
qspi.ifconfig1.write(|w| {
let w = unsafe { w.sckdelay().bits(80) };
let w = w.dpmen().exit();
let w = w.spimode().mode0();
let w = unsafe { w.sckfreq().bits(3) };
w
});
qspi.xipoffset
.write(|w| unsafe { w.xipoffset().bits(config.xip_offset) });
// Enable it
qspi.enable.write(|w| w.enable().enabled());
qspi.events_ready.reset();
qspi.tasks_activate.write(|w| w.tasks_activate().bit(true));
while qspi.events_ready.read().bits() == 0 {}
qspi.events_ready.reset();
// Enable READY interrupt
qspi.intenset.write(|w| w.ready().set());
interrupt::set_priority(Interrupt::QSPI, interrupt::Priority::Level7);
interrupt::enable(Interrupt::QSPI);
Self { inner: qspi }
}
pub fn custom_instruction<'a>(
&'a mut self,
opcode: u8,
req: &'a [u8],
resp: &'a mut [u8],
) -> impl Future<Output = Result<(), Error>> + 'a {
async move {
let bomb = DropBomb::new();
assert!(req.len() <= 8);
assert!(resp.len() <= 8);
let mut dat0: u32 = 0;
let mut dat1: u32 = 0;
for i in 0..4 {
if i < req.len() {
dat0 |= (req[i] as u32) << (i * 8);
}
}
for i in 0..4 {
if i + 4 < req.len() {
dat1 |= (req[i + 4] as u32) << (i * 8);
}
}
let len = core::cmp::max(req.len(), resp.len()) as u8;
self.inner.cinstrdat0.write(|w| unsafe { w.bits(dat0) });
self.inner.cinstrdat1.write(|w| unsafe { w.bits(dat1) });
self.inner.events_ready.reset();
self.inner.cinstrconf.write(|w| {
let w = unsafe { w.opcode().bits(opcode) };
let w = unsafe { w.length().bits(len + 1) };
let w = w.lio2().bit(true);
let w = w.lio3().bit(true);
let w = w.wipwait().bit(true);
let w = w.wren().bit(true);
let w = w.lfen().bit(false);
let w = w.lfstop().bit(false);
w
});
SIGNAL.wait().await;
let dat0 = self.inner.cinstrdat0.read().bits();
let dat1 = self.inner.cinstrdat1.read().bits();
for i in 0..4 {
if i < resp.len() {
resp[i] = (dat0 >> (i * 8)) as u8;
}
}
for i in 0..4 {
if i + 4 < resp.len() {
resp[i] = (dat1 >> (i * 8)) as u8;
}
}
bomb.defuse();
Ok(())
}
}
}
impl Flash for Qspi {
type ReadFuture<'a> = impl Future<Output = Result<(), Error>> + 'a;
type WriteFuture<'a> = impl Future<Output = Result<(), Error>> + 'a;
type ErasePageFuture<'a> = impl Future<Output = Result<(), Error>> + 'a;
fn read<'a>(&'a mut self, address: usize, data: &'a mut [u8]) -> Self::ReadFuture<'a> {
async move {
let bomb = DropBomb::new();
assert_eq!(data.as_ptr() as u32 % 4, 0);
assert_eq!(data.len() as u32 % 4, 0);
assert_eq!(address as u32 % 4, 0);
self.inner
.read
.src
.write(|w| unsafe { w.src().bits(address as u32) });
self.inner
.read
.dst
.write(|w| unsafe { w.dst().bits(data.as_ptr() as u32) });
self.inner
.read
.cnt
.write(|w| unsafe { w.cnt().bits(data.len() as u32) });
self.inner.events_ready.reset();
self.inner
.tasks_readstart
.write(|w| w.tasks_readstart().bit(true));
SIGNAL.wait().await;
bomb.defuse();
Ok(())
}
}
fn write<'a>(&'a mut self, address: usize, data: &'a [u8]) -> Self::WriteFuture<'a> {
async move {
let bomb = DropBomb::new();
assert_eq!(data.as_ptr() as u32 % 4, 0);
assert_eq!(data.len() as u32 % 4, 0);
assert_eq!(address as u32 % 4, 0);
self.inner
.write
.src
.write(|w| unsafe { w.src().bits(data.as_ptr() as u32) });
self.inner
.write
.dst
.write(|w| unsafe { w.dst().bits(address as u32) });
self.inner
.write
.cnt
.write(|w| unsafe { w.cnt().bits(data.len() as u32) });
self.inner.events_ready.reset();
self.inner
.tasks_writestart
.write(|w| w.tasks_writestart().bit(true));
SIGNAL.wait().await;
bomb.defuse();
Ok(())
}
}
fn erase<'a>(&'a mut self, address: usize) -> Self::ErasePageFuture<'a> {
async move {
let bomb = DropBomb::new();
assert_eq!(address as u32 % 4096, 0);
self.inner
.erase
.ptr
.write(|w| unsafe { w.ptr().bits(address as u32) });
self.inner.erase.len.write(|w| w.len()._4kb());
self.inner.events_ready.reset();
self.inner
.tasks_erasestart
.write(|w| w.tasks_erasestart().bit(true));
SIGNAL.wait().await;
bomb.defuse();
Ok(())
}
}
fn size(&self) -> usize {
256 * 4096 // TODO
}
fn read_size(&self) -> usize {
4 // TODO
}
fn write_size(&self) -> usize {
4 // TODO
}
fn erase_size(&self) -> usize {
4096 // TODO
}
}
static SIGNAL: Signal<()> = Signal::new();
#[interrupt]
unsafe fn QSPI() {
let p = unsafe { crate::pac::Peripherals::steal().QSPI };
if p.events_ready.read().events_ready().bit_is_set() {
p.events_ready.reset();
SIGNAL.signal(());
}
}

550
embassy-nrf/src/uarte.rs Normal file
View file

@ -0,0 +1,550 @@
//! HAL interface to the UARTE peripheral
//!
//! See product specification:
//!
//! - nrf52832: Section 35
//! - nrf52840: Section 6.34
use core::cell::UnsafeCell;
use core::cmp::min;
use core::marker::PhantomPinned;
use core::ops::Deref;
use core::pin::Pin;
use core::ptr;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::{Context, Poll};
use crate::interrupt;
use crate::interrupt::CriticalSection;
use crate::pac::{uarte0, Interrupt, UARTE0, UARTE1};
use embedded_hal::digital::v2::OutputPin;
use nrf52840_hal::gpio::{Floating, Input, Output, Pin as GpioPin, Port as GpioPort, PushPull};
// Re-export SVD variants to allow user to directly set values
pub use uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity};
use embassy::io::{AsyncBufRead, AsyncWrite, Result};
use embassy::util::WakerStore;
use defmt::trace;
//use crate::trace;
const RINGBUF_SIZE: usize = 512;
struct RingBuf {
buf: [u8; RINGBUF_SIZE],
start: usize,
end: usize,
empty: bool,
}
impl RingBuf {
fn new() -> Self {
RingBuf {
buf: [0; RINGBUF_SIZE],
start: 0,
end: 0,
empty: true,
}
}
fn push_buf(&mut self) -> &mut [u8] {
if self.start == self.end && !self.empty {
trace!(" ringbuf: push_buf empty");
return &mut self.buf[..0];
}
let n = if self.start <= self.end {
RINGBUF_SIZE - self.end
} else {
self.start - self.end
};
trace!(" ringbuf: push_buf {:?}..{:?}", self.end, self.end + n);
&mut self.buf[self.end..self.end + n]
}
fn push(&mut self, n: usize) {
trace!(" ringbuf: push {:?}", n);
if n == 0 {
return;
}
self.end = Self::wrap(self.end + n);
self.empty = false;
}
fn pop_buf(&mut self) -> &mut [u8] {
if self.empty {
trace!(" ringbuf: pop_buf empty");
return &mut self.buf[..0];
}
let n = if self.end <= self.start {
RINGBUF_SIZE - self.start
} else {
self.end - self.start
};
trace!(" ringbuf: pop_buf {:?}..{:?}", self.start, self.start + n);
&mut self.buf[self.start..self.start + n]
}
fn pop(&mut self, n: usize) {
trace!(" ringbuf: pop {:?}", n);
if n == 0 {
return;
}
self.start = Self::wrap(self.start + n);
self.empty = self.start == self.end;
}
fn wrap(n: usize) -> usize {
assert!(n <= RINGBUF_SIZE);
if n == RINGBUF_SIZE {
0
} else {
n
}
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
enum RxState {
Idle,
Receiving,
ReceivingReady,
Stopping,
}
#[derive(Copy, Clone, Debug, PartialEq)]
enum TxState {
Idle,
Transmitting(usize),
}
/// Interface to a UARTE instance
///
/// This is a very basic interface that comes with the following limitations:
/// - The UARTE instances share the same address space with instances of UART.
/// You need to make sure that conflicting instances
/// are disabled before using `Uarte`. See product specification:
/// - nrf52832: Section 15.2
/// - nrf52840: Section 6.1.2
pub struct Uarte<T: Instance> {
started: bool,
state: UnsafeCell<UarteState<T>>,
}
// public because it needs to be used in Instance::{get_state, set_state}, but
// should not be used outside the module
#[doc(hidden)]
pub struct UarteState<T> {
inner: T,
rx: RingBuf,
rx_state: RxState,
rx_waker: WakerStore,
tx: RingBuf,
tx_state: TxState,
tx_waker: WakerStore,
_pin: PhantomPinned,
}
fn port_bit(port: GpioPort) -> bool {
match port {
GpioPort::Port0 => false,
GpioPort::Port1 => true,
}
}
impl<T: Instance> Uarte<T> {
pub fn new(uarte: T, mut pins: Pins, parity: Parity, baudrate: Baudrate) -> Self {
// Select pins
uarte.psel.rxd.write(|w| {
let w = unsafe { w.pin().bits(pins.rxd.pin()) };
let w = w.port().bit(port_bit(pins.rxd.port()));
w.connect().connected()
});
pins.txd.set_high().unwrap();
uarte.psel.txd.write(|w| {
let w = unsafe { w.pin().bits(pins.txd.pin()) };
let w = w.port().bit(port_bit(pins.txd.port()));
w.connect().connected()
});
// Optional pins
uarte.psel.cts.write(|w| {
if let Some(ref pin) = pins.cts {
let w = unsafe { w.pin().bits(pin.pin()) };
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
} else {
w.connect().disconnected()
}
});
uarte.psel.rts.write(|w| {
if let Some(ref pin) = pins.rts {
let w = unsafe { w.pin().bits(pin.pin()) };
let w = w.port().bit(port_bit(pin.port()));
w.connect().connected()
} else {
w.connect().disconnected()
}
});
// Enable UARTE instance
uarte.enable.write(|w| w.enable().enabled());
// Enable interrupts
uarte.intenset.write(|w| w.endrx().set().endtx().set());
// Configure
let hardware_flow_control = pins.rts.is_some() && pins.cts.is_some();
uarte
.config
.write(|w| w.hwfc().bit(hardware_flow_control).parity().variant(parity));
// Configure frequency
uarte.baudrate.write(|w| w.baudrate().variant(baudrate));
Uarte {
started: false,
state: UnsafeCell::new(UarteState {
inner: uarte,
rx: RingBuf::new(),
rx_state: RxState::Idle,
rx_waker: WakerStore::new(),
tx: RingBuf::new(),
tx_state: TxState::Idle,
tx_waker: WakerStore::new(),
_pin: PhantomPinned,
}),
}
}
fn with_state<'a, R>(
self: Pin<&'a mut Self>,
f: impl FnOnce(Pin<&'a mut UarteState<T>>) -> R,
) -> R {
let Self { state, started } = unsafe { self.get_unchecked_mut() };
interrupt::free(|cs| {
let ptr = state.get();
if !*started {
T::set_state(cs, ptr);
*started = true;
// safety: safe because critical section ensures only one *mut UartState
// exists at the same time.
unsafe { Pin::new_unchecked(&mut *ptr) }.start();
}
// safety: safe because critical section ensures only one *mut UartState
// exists at the same time.
f(unsafe { Pin::new_unchecked(&mut *ptr) })
})
}
}
impl<T: Instance> Drop for Uarte<T> {
fn drop(&mut self) {
// stop DMA before dropping, because DMA is using the buffer in `self`.
todo!()
}
}
impl<T: Instance> AsyncBufRead for Uarte<T> {
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
self.with_state(|s| s.poll_fill_buf(cx))
}
fn consume(self: Pin<&mut Self>, amt: usize) {
self.with_state(|s| s.consume(amt))
}
}
impl<T: Instance> AsyncWrite for Uarte<T> {
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
self.with_state(|s| s.poll_write(cx, buf))
}
}
impl<T: Instance> UarteState<T> {
pub fn start(self: Pin<&mut Self>) {
interrupt::set_priority(T::interrupt(), interrupt::Priority::Level7);
interrupt::enable(T::interrupt());
interrupt::pend(T::interrupt());
}
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
let this = unsafe { self.get_unchecked_mut() };
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// before any DMA action has started
compiler_fence(Ordering::SeqCst);
trace!("poll_read");
// We have data ready in buffer? Return it.
let buf = this.rx.pop_buf();
if buf.len() != 0 {
trace!(" got {:?} {:?}", buf.as_ptr() as u32, buf.len());
return Poll::Ready(Ok(buf));
}
trace!(" empty");
if this.rx_state == RxState::ReceivingReady {
trace!(" stopping");
this.rx_state = RxState::Stopping;
this.inner.tasks_stoprx.write(|w| unsafe { w.bits(1) });
}
this.rx_waker.store(cx.waker());
Poll::Pending
}
fn consume(self: Pin<&mut Self>, amt: usize) {
let this = unsafe { self.get_unchecked_mut() };
trace!("consume {:?}", amt);
this.rx.pop(amt);
interrupt::pend(T::interrupt());
}
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
let this = unsafe { self.get_unchecked_mut() };
trace!("poll_write: {:?}", buf.len());
let tx_buf = this.tx.push_buf();
if tx_buf.len() == 0 {
trace!("poll_write: pending");
this.tx_waker.store(cx.waker());
return Poll::Pending;
}
let n = min(tx_buf.len(), buf.len());
tx_buf[..n].copy_from_slice(&buf[..n]);
this.tx.push(n);
trace!("poll_write: queued {:?}", n);
// Conservative compiler fence to prevent optimizations that do not
// take in to account actions by DMA. The fence has been placed here,
// before any DMA action has started
compiler_fence(Ordering::SeqCst);
interrupt::pend(T::interrupt());
Poll::Ready(Ok(n))
}
fn on_interrupt(&mut self) {
trace!("irq: start");
let mut more_work = true;
while more_work {
more_work = false;
match self.rx_state {
RxState::Idle => {
trace!(" irq_rx: in state idle");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy?????");
self.inner.events_rxdrdy.reset();
}
if self.inner.events_endrx.read().bits() != 0 {
panic!("unexpected endrx");
}
let buf = self.rx.push_buf();
if buf.len() != 0 {
trace!(" irq_rx: starting {:?}", buf.len());
self.rx_state = RxState::Receiving;
// Set up the DMA read
self.inner.rxd.ptr.write(|w|
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
self.inner.rxd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is at least 8 bits wide and accepts the full
// range of values.
unsafe { w.maxcnt().bits(buf.len() as _) });
trace!(" irq_rx: buf {:?} {:?}", buf.as_ptr() as u32, buf.len());
// Enable RXRDY interrupt.
self.inner.events_rxdrdy.reset();
self.inner.intenset.write(|w| w.rxdrdy().set());
// Start UARTE Receive transaction
self.inner.tasks_startrx.write(|w|
// `1` is a valid value to write to task registers.
unsafe { w.bits(1) });
}
}
RxState::Receiving => {
trace!(" irq_rx: in state receiving");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy");
// Disable the RXRDY event interrupt
// RXRDY is triggered for every byte, but we only care about whether we have
// some bytes or not. So as soon as we have at least one, disable it, to avoid
// wasting CPU cycles in interrupts.
self.inner.intenclr.write(|w| w.rxdrdy().clear());
self.inner.events_rxdrdy.reset();
self.rx_waker.wake();
self.rx_state = RxState::ReceivingReady;
more_work = true; // in case we also have endrx pending
}
}
RxState::ReceivingReady | RxState::Stopping => {
trace!(" irq_rx: in state ReceivingReady");
if self.inner.events_rxdrdy.read().bits() != 0 {
trace!(" irq_rx: rxdrdy");
self.inner.events_rxdrdy.reset();
}
if self.inner.events_endrx.read().bits() != 0 {
let n: usize = self.inner.rxd.amount.read().amount().bits() as usize;
trace!(" irq_rx: endrx {:?}", n);
self.rx.push(n);
self.inner.events_endrx.reset();
self.rx_waker.wake();
self.rx_state = RxState::Idle;
more_work = true; // start another rx if possible
}
}
}
}
more_work = true;
while more_work {
more_work = false;
match self.tx_state {
TxState::Idle => {
trace!(" irq_tx: in state Idle");
let buf = self.tx.pop_buf();
if buf.len() != 0 {
trace!(" irq_tx: starting {:?}", buf.len());
self.tx_state = TxState::Transmitting(buf.len());
// Set up the DMA write
self.inner.txd.ptr.write(|w|
// The PTR field is a full 32 bits wide and accepts the full range
// of values.
unsafe { w.ptr().bits(buf.as_ptr() as u32) });
self.inner.txd.maxcnt.write(|w|
// We're giving it the length of the buffer, so no danger of
// accessing invalid memory. We have verified that the length of the
// buffer fits in an `u8`, so the cast to `u8` is also fine.
//
// The MAXCNT field is 8 bits wide and accepts the full range of
// values.
unsafe { w.maxcnt().bits(buf.len() as _) });
// Start UARTE Transmit transaction
self.inner.tasks_starttx.write(|w|
// `1` is a valid value to write to task registers.
unsafe { w.bits(1) });
}
}
TxState::Transmitting(n) => {
trace!(" irq_tx: in state Transmitting");
if self.inner.events_endtx.read().bits() != 0 {
self.inner.events_endtx.reset();
trace!(" irq_tx: endtx {:?}", n);
self.tx.pop(n);
self.tx_waker.wake();
self.tx_state = TxState::Idle;
more_work = true; // start another tx if possible
}
}
}
}
trace!("irq: end");
}
}
pub struct Pins {
pub rxd: GpioPin<Input<Floating>>,
pub txd: GpioPin<Output<PushPull>>,
pub cts: Option<GpioPin<Input<Floating>>>,
pub rts: Option<GpioPin<Output<PushPull>>>,
}
mod private {
use nrf52840_pac::{UARTE0, UARTE1};
pub trait Sealed {}
impl Sealed for UARTE0 {}
impl Sealed for UARTE1 {}
}
pub trait Instance: Deref<Target = uarte0::RegisterBlock> + Sized + private::Sealed {
fn interrupt() -> Interrupt;
#[doc(hidden)]
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self>;
#[doc(hidden)]
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>);
}
#[interrupt]
unsafe fn UARTE0_UART0() {
interrupt::free(|cs| UARTE0::get_state(cs).as_mut().unwrap().on_interrupt());
}
#[interrupt]
unsafe fn UARTE1() {
interrupt::free(|cs| UARTE1::get_state(cs).as_mut().unwrap().on_interrupt());
}
static mut UARTE0_STATE: *mut UarteState<UARTE0> = ptr::null_mut();
static mut UARTE1_STATE: *mut UarteState<UARTE1> = ptr::null_mut();
impl Instance for UARTE0 {
fn interrupt() -> Interrupt {
Interrupt::UARTE0_UART0
}
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self> {
unsafe { UARTE0_STATE } // Safe because of CriticalSection
}
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>) {
unsafe { UARTE0_STATE = state } // Safe because of CriticalSection
}
}
impl Instance for UARTE1 {
fn interrupt() -> Interrupt {
Interrupt::UARTE1
}
fn get_state(_cs: &CriticalSection) -> *mut UarteState<Self> {
unsafe { UARTE1_STATE } // Safe because of CriticalSection
}
fn set_state(_cs: &CriticalSection, state: *mut UarteState<Self>) {
unsafe { UARTE1_STATE = state } // Safe because of CriticalSection
}
}

14
embassy/Cargo.toml Normal file
View file

@ -0,0 +1,14 @@
[package]
name = "embassy"
version = "0.1.0"
authors = ["Dario Nieuwenhuis <dirbaio@dirbaio.net>"]
edition = "2018"
[features]
std = []
[dependencies]
defmt = "0.1.0"
cortex-m = "0.6.3"
futures = { version = "0.3.5", default-features = false, features = [ "async-await" ] }
pin-project = { version = "0.4.23", default-features = false }

51
embassy/src/flash.rs Normal file
View file

@ -0,0 +1,51 @@
use core::future::Future;
#[derive(defmt::Format, Copy, Clone, Debug, Eq, PartialEq)]
pub enum Error {
Failed,
AddressMisaligned,
BufferMisaligned,
_NonExhaustive,
}
pub trait Flash {
type ReadFuture<'a>: Future<Output = Result<(), Error>>;
type WriteFuture<'a>: Future<Output = Result<(), Error>>;
type ErasePageFuture<'a>: Future<Output = Result<(), Error>>;
/// Reads data from the flash device.
///
/// address must be a multiple of self.read_size().
/// buf.len() must be a multiple of self.read_size().
fn read<'a>(&'a mut self, address: usize, buf: &'a mut [u8]) -> Self::ReadFuture<'a>;
/// Writes data to the flash device.
///
/// address must be a multiple of self.write_size().
/// buf.len() must be a multiple of self.write_size().
fn write<'a>(&'a mut self, address: usize, buf: &'a [u8]) -> Self::WriteFuture<'a>;
/// Erases a single page from the flash device.
///
/// address must be a multiple of self.erase_size().
fn erase<'a>(&'a mut self, address: usize) -> Self::ErasePageFuture<'a>;
/// Returns the total size, in bytes.
/// This is not guaranteed to be a power of 2.
fn size(&self) -> usize;
/// Returns the read size in bytes.
/// This is guaranteed to be a power of 2.
fn read_size(&self) -> usize;
/// Returns the write size in bytes.
/// This is guaranteed to be a power of 2.
fn write_size(&self) -> usize;
/// Returns the erase size in bytes.
/// This is guaranteed to be a power of 2.
fn erase_size(&self) -> usize;
}

133
embassy/src/io/error.rs Normal file
View file

@ -0,0 +1,133 @@
#[cfg(feature = "std")]
use core::convert::From;
#[cfg(feature = "std")]
use futures::io;
/// Categories of errors that can occur.
///
/// This list is intended to grow over time and it is not recommended to
/// exhaustively match against it.
#[derive(defmt::Format, Debug, Clone, Copy, PartialEq, Eq)]
pub enum Error {
/// An entity was not found, often a file.
NotFound,
/// The operation lacked the necessary privileges to complete.
PermissionDenied,
/// The connection was refused by the remote server.
ConnectionRefused,
/// The connection was reset by the remote server.
ConnectionReset,
/// The connection was aborted (terminated) by the remote server.
ConnectionAborted,
/// The network operation failed because it was not connected yet.
NotConnected,
/// A socket address could not be bound because the address is already in
/// use elsewhere.
AddrInUse,
/// A nonexistent interface was requested or the requested address was not
/// local.
AddrNotAvailable,
/// The operation failed because a pipe was closed.
BrokenPipe,
/// An entity already exists, often a file.
AlreadyExists,
/// The operation needs to block to complete, but the blocking operation was
/// requested to not occur.
WouldBlock,
/// A parameter was incorrect.
InvalidInput,
/// Data not valid for the operation were encountered.
///
/// Unlike [`InvalidInput`], this typically means that the operation
/// parameters were valid, however the error was caused by malformed
/// input data.
///
/// For example, a function that reads a file into a string will error with
/// `InvalidData` if the file's contents are not valid UTF-8.
///
/// [`InvalidInput`]: #variant.InvalidInput
InvalidData,
/// The I/O operation's timeout expired, causing it to be canceled.
TimedOut,
/// An error returned when an operation could not be completed because a
/// call to [`write`] returned [`Ok(0)`].
///
/// This typically means that an operation could only succeed if it wrote a
/// particular number of bytes but only a smaller number of bytes could be
/// written.
///
/// [`write`]: ../../std/io/trait.Write.html#tymethod.write
/// [`Ok(0)`]: ../../std/io/type.Result.html
WriteZero,
/// This operation was interrupted.
///
/// Interrupted operations can typically be retried.
Interrupted,
/// An error returned when an operation could not be completed because an
/// "end of file" was reached prematurely.
///
/// This typically means that an operation could only succeed if it read a
/// particular number of bytes but only a smaller number of bytes could be
/// read.
UnexpectedEof,
/// An operation would have read more data if the given buffer was large.
///
/// This typically means that the buffer has been filled with the first N bytes
/// of the read data.
Truncated,
/// Any I/O error not part of this list.
Other,
}
pub type Result<T> = core::result::Result<T, Error>;
#[cfg(feature = "std")]
impl From<io::Error> for Error {
fn from(err: io::Error) -> Error {
match err.kind() {
io::ErrorKind::NotFound => Error::NotFound,
io::ErrorKind::PermissionDenied => Error::PermissionDenied,
io::ErrorKind::ConnectionRefused => Error::ConnectionRefused,
io::ErrorKind::ConnectionReset => Error::ConnectionReset,
io::ErrorKind::ConnectionAborted => Error::ConnectionAborted,
io::ErrorKind::NotConnected => Error::NotConnected,
io::ErrorKind::AddrInUse => Error::AddrInUse,
io::ErrorKind::AddrNotAvailable => Error::AddrNotAvailable,
io::ErrorKind::BrokenPipe => Error::BrokenPipe,
io::ErrorKind::AlreadyExists => Error::AlreadyExists,
io::ErrorKind::WouldBlock => Error::WouldBlock,
io::ErrorKind::InvalidInput => Error::InvalidInput,
io::ErrorKind::InvalidData => Error::InvalidData,
io::ErrorKind::TimedOut => Error::TimedOut,
io::ErrorKind::WriteZero => Error::WriteZero,
io::ErrorKind::Interrupted => Error::Interrupted,
io::ErrorKind::UnexpectedEof => Error::UnexpectedEof,
_ => Error::Other,
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for Error {}
/*
impl From<smoltcp::Error> for Error {
fn from(err: smoltcp::Error) -> Error {
match err {
smoltcp::Error::Exhausted => Error::Exhausted,
smoltcp::Error::Illegal => Error::Illegal,
smoltcp::Error::Unaddressable => Error::Unaddressable,
smoltcp::Error::Truncated => Error::Truncated,
smoltcp::Error::Checksum => Error::Checksum,
smoltcp::Error::Unrecognized => Error::Unrecognized,
smoltcp::Error::Fragmented => Error::Fragmented,
smoltcp::Error::Malformed => Error::Malformed,
smoltcp::Error::Dropped => Error::Dropped,
_ => Error::Other,
}
}
}
*/

7
embassy/src/io/mod.rs Normal file
View file

@ -0,0 +1,7 @@
mod error;
mod traits;
mod util;
pub use self::error::*;
pub use self::traits::*;
pub use self::util::*;

197
embassy/src/io/traits.rs Normal file
View file

@ -0,0 +1,197 @@
use core::ops::DerefMut;
use core::pin::Pin;
use core::task::{Context, Poll};
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
#[cfg(feature = "std")]
use futures::io as std_io;
use super::error::Result;
/// Read bytes asynchronously.
///
/// This trait is analogous to the `std::io::BufRead` trait, but integrates
/// with the asynchronous task system. In particular, the `poll_fill_buf`
/// method, unlike `BufRead::fill_buf`, will automatically queue the current task
/// for wakeup and return if data is not yet available, rather than blocking
/// the calling thread.
pub trait AsyncBufRead {
/// Attempt to return the contents of the internal buffer, filling it with more data
/// from the inner reader if it is empty.
///
/// On success, returns `Poll::Ready(Ok(buf))`.
///
/// If no data is available for reading, the method returns
/// `Poll::Pending` and arranges for the current task (via
/// `cx.waker().wake_by_ref()`) to receive a notification when the object becomes
/// readable or is closed.
///
/// This function is a lower-level call. It needs to be paired with the
/// [`consume`] method to function properly. When calling this
/// method, none of the contents will be "read" in the sense that later
/// calling [`poll_read`] may return the same contents. As such, [`consume`] must
/// be called with the number of bytes that are consumed from this buffer to
/// ensure that the bytes are never returned twice.
///
/// [`poll_read`]: AsyncBufRead::poll_read
/// [`consume`]: AsyncBufRead::consume
///
/// An empty buffer returned indicates that the stream has reached EOF.
///
/// # Implementation
///
/// This function may not return errors of kind `WouldBlock` or
/// `Interrupted`. Implementations must convert `WouldBlock` into
/// `Poll::Pending` and either internally retry or convert
/// `Interrupted` into another error kind.
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>>;
/// Tells this buffer that `amt` bytes have been consumed from the buffer,
/// so they should no longer be returned in calls to [`poll_read`].
///
/// This function is a lower-level call. It needs to be paired with the
/// [`poll_fill_buf`] method to function properly. This function does
/// not perform any I/O, it simply informs this object that some amount of
/// its buffer, returned from [`poll_fill_buf`], has been consumed and should
/// no longer be returned. As such, this function may do odd things if
/// [`poll_fill_buf`] isn't called before calling it.
///
/// The `amt` must be `<=` the number of bytes in the buffer returned by
/// [`poll_fill_buf`].
///
/// [`poll_read`]: AsyncBufRead::poll_read
/// [`poll_fill_buf`]: AsyncBufRead::poll_fill_buf
fn consume(self: Pin<&mut Self>, amt: usize);
}
/// Write bytes asynchronously.
///
/// This trait is analogous to the `core::io::Write` trait, but integrates
/// with the asynchronous task system. In particular, the `poll_write`
/// method, unlike `Write::write`, will automatically queue the current task
/// for wakeup and return if the writer cannot take more data, rather than blocking
/// the calling thread.
pub trait AsyncWrite {
/// Attempt to write bytes from `buf` into the object.
///
/// On success, returns `Poll::Ready(Ok(num_bytes_written))`.
///
/// If the object is not ready for writing, the method returns
/// `Poll::Pending` and arranges for the current task (via
/// `cx.waker().wake_by_ref()`) to receive a notification when the object becomes
/// writable or is closed.
///
/// # Implementation
///
/// This function may not return errors of kind `WouldBlock` or
/// `Interrupted`. Implementations must convert `WouldBlock` into
/// `Poll::Pending` and either internally retry or convert
/// `Interrupted` into another error kind.
///
/// `poll_write` must try to make progress by flushing the underlying object if
/// that is the only way the underlying object can become writable again.
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>>;
}
macro_rules! defer_async_read {
() => {
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
Pin::new(&mut **self.get_mut()).poll_fill_buf(cx)
}
fn consume(mut self: Pin<&mut Self>, amt: usize) {
Pin::new(&mut **self).consume(amt)
}
};
}
#[cfg(feature = "alloc")]
impl<T: ?Sized + AsyncBufRead + Unpin> AsyncBufRead for Box<T> {
defer_async_read!();
}
impl<T: ?Sized + AsyncBufRead + Unpin> AsyncBufRead for &mut T {
defer_async_read!();
}
impl<P> AsyncBufRead for Pin<P>
where
P: DerefMut + Unpin,
P::Target: AsyncBufRead,
{
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
self.get_mut().as_mut().poll_fill_buf(cx)
}
fn consume(self: Pin<&mut Self>, amt: usize) {
self.get_mut().as_mut().consume(amt)
}
}
macro_rules! deref_async_write {
() => {
fn poll_write(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<Result<usize>> {
Pin::new(&mut **self).poll_write(cx, buf)
}
};
}
#[cfg(feature = "alloc")]
impl<T: ?Sized + AsyncWrite + Unpin> AsyncWrite for Box<T> {
deref_async_write!();
}
impl<T: ?Sized + AsyncWrite + Unpin> AsyncWrite for &mut T {
deref_async_write!();
}
impl<P> AsyncWrite for Pin<P>
where
P: DerefMut + Unpin,
P::Target: AsyncWrite,
{
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
self.get_mut().as_mut().poll_write(cx, buf)
}
}
#[cfg(feature = "std")]
pub struct FromStdIo<T>(T);
#[cfg(feature = "std")]
impl<T> FromStdIo<T> {
pub fn new(inner: T) -> Self {
Self(inner)
}
}
#[cfg(feature = "std")]
impl<T: std_io::AsyncBufRead> AsyncBufRead for FromStdIo<T> {
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
let Self(inner) = unsafe { self.get_unchecked_mut() };
unsafe { Pin::new_unchecked(inner) }
.poll_fill_buf(cx)
.map_err(|e| e.into())
}
fn consume(self: Pin<&mut Self>, amt: usize) {
let Self(inner) = unsafe { self.get_unchecked_mut() };
unsafe { Pin::new_unchecked(inner) }.consume(amt)
}
}
#[cfg(feature = "std")]
impl<T: std_io::AsyncWrite> AsyncWrite for FromStdIo<T> {
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
let Self(inner) = unsafe { self.get_unchecked_mut() };
unsafe { Pin::new_unchecked(inner) }
.poll_write(cx, buf)
.map_err(|e| e.into())
}
}

View file

@ -0,0 +1,80 @@
use core::future::Future;
use core::pin::Pin;
use core::task::{Context, Poll};
use futures::ready;
use pin_project::pin_project;
use crate::io::{AsyncBufRead, AsyncWrite, Error, Result};
/// Creates a future which copies all the bytes from one object to another.
///
/// The returned future will copy all the bytes read from this `AsyncBufRead` into the
/// `writer` specified. This future will only complete once the `reader` has hit
/// EOF and all bytes have been written to and flushed from the `writer`
/// provided.
///
/// On success the number of bytes is returned.
///
/// # Examples
///
/// ```
/// # futures::executor::block_on(async {
/// use futures::io::{self, AsyncWriteExt, Cursor};
///
/// let reader = Cursor::new([1, 2, 3, 4]);
/// let mut writer = Cursor::new(vec![0u8; 5]);
///
/// let bytes = io::copy_buf(reader, &mut writer).await?;
/// writer.close().await?;
///
/// assert_eq!(bytes, 4);
/// assert_eq!(writer.into_inner(), [1, 2, 3, 4, 0]);
/// # Ok::<(), Box<dyn std::error::Error>>(()) }).unwrap();
/// ```
pub fn copy_buf<R, W>(reader: R, writer: &mut W) -> CopyBuf<'_, R, W>
where
R: AsyncBufRead,
W: AsyncWrite + Unpin + ?Sized,
{
CopyBuf {
reader,
writer,
amt: 0,
}
}
/// Future for the [`copy_buf()`] function.
#[pin_project]
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct CopyBuf<'a, R, W: ?Sized> {
#[pin]
reader: R,
writer: &'a mut W,
amt: usize,
}
impl<R, W> Future for CopyBuf<'_, R, W>
where
R: AsyncBufRead,
W: AsyncWrite + Unpin + ?Sized,
{
type Output = Result<usize>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let mut this = self.project();
loop {
let buffer = ready!(this.reader.as_mut().poll_fill_buf(cx))?;
if buffer.is_empty() {
return Poll::Ready(Ok(*this.amt));
}
let i = ready!(Pin::new(&mut this.writer).poll_write(cx, buffer))?;
if i == 0 {
return Poll::Ready(Err(Error::WriteZero.into()));
}
*this.amt += i;
this.reader.as_mut().consume(i);
}
}
}

145
embassy/src/io/util/mod.rs Normal file
View file

@ -0,0 +1,145 @@
use core::cmp::min;
use core::pin::Pin;
use core::task::{Context, Poll};
use futures::ready;
mod read;
pub use self::read::Read;
mod read_buf;
pub use self::read_buf::ReadBuf;
mod read_byte;
pub use self::read_byte::ReadByte;
mod read_exact;
pub use self::read_exact::ReadExact;
mod read_while;
pub use self::read_while::ReadWhile;
mod read_to_end;
pub use self::read_to_end::ReadToEnd;
mod skip_while;
pub use self::skip_while::SkipWhile;
mod write;
pub use self::write::Write;
mod write_all;
pub use self::write_all::WriteAll;
mod write_byte;
pub use self::write_byte::WriteByte;
#[cfg(feature = "alloc")]
mod split;
#[cfg(feature = "alloc")]
pub use self::split::{split, ReadHalf, WriteHalf};
mod copy_buf;
pub use self::copy_buf::{copy_buf, CopyBuf};
use super::error::Result;
use super::traits::{AsyncBufRead, AsyncWrite};
pub trait AsyncBufReadExt: AsyncBufRead {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<Result<usize>>
where
Self: Unpin,
{
let mut this = &mut *self;
let rbuf = ready!(Pin::new(&mut this).poll_fill_buf(cx))?;
let n = min(buf.len(), rbuf.len());
buf[..n].copy_from_slice(&rbuf[..n]);
Pin::new(&mut this).consume(n);
Poll::Ready(Ok(n))
}
fn read_while<'a, F: Fn(u8) -> bool>(
&'a mut self,
buf: &'a mut [u8],
f: F,
) -> ReadWhile<'a, Self, F>
where
Self: Unpin,
{
ReadWhile::new(self, f, buf)
}
fn skip_while<'a, F: Fn(u8) -> bool>(&'a mut self, f: F) -> SkipWhile<'a, Self, F>
where
Self: Unpin,
{
SkipWhile::new(self, f)
}
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Read<'a, Self>
where
Self: Unpin,
{
Read::new(self, buf)
}
fn read_buf<'a>(&'a mut self) -> ReadBuf<'a, Self>
where
Self: Unpin,
{
ReadBuf::new(self)
}
fn read_byte<'a>(&'a mut self) -> ReadByte<'a, Self>
where
Self: Unpin,
{
ReadByte::new(self)
}
fn read_exact<'a>(&'a mut self, buf: &'a mut [u8]) -> ReadExact<'a, Self>
where
Self: Unpin,
{
ReadExact::new(self, buf)
}
fn read_to_end<'a>(&'a mut self, buf: &'a mut [u8]) -> ReadToEnd<'a, Self>
where
Self: Unpin,
{
ReadToEnd::new(self, buf)
}
}
impl<R: AsyncBufRead + ?Sized> AsyncBufReadExt for R {}
pub async fn read_line<R: AsyncBufRead + Unpin>(r: &mut R, buf: &mut [u8]) -> Result<usize> {
r.skip_while(|b| b == b'\r' || b == b'\n').await?;
let n = r.read_while(buf, |b| b != b'\r' && b != b'\n').await?;
r.skip_while(|b| b == b'\r').await?;
//assert_eq!(b'\n', r.read_byte().await?);
r.read_byte().await?;
Ok(n)
}
pub trait AsyncWriteExt: AsyncWrite {
fn write_all<'a>(&'a mut self, buf: &'a [u8]) -> WriteAll<'a, Self>
where
Self: Unpin,
{
WriteAll::new(self, buf)
}
fn write_byte<'a>(&'a mut self, byte: u8) -> WriteByte<'a, Self>
where
Self: Unpin,
{
WriteByte::new(self, byte)
}
}
impl<R: AsyncWrite + ?Sized> AsyncWriteExt for R {}

View file

@ -0,0 +1,39 @@
use super::super::error::{Result};
use super::super::traits::AsyncBufRead;
use core::cmp::min;
use core::pin::Pin;
use futures::future::Future;
use futures::ready;
use futures::task::{Context, Poll};
/// Future for the [`read_exact`](super::AsyncBufReadExt::read_exact) method.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Read<'a, R: ?Sized> {
reader: &'a mut R,
buf: &'a mut [u8],
}
impl<R: ?Sized + Unpin> Unpin for Read<'_, R> {}
impl<'a, R: AsyncBufRead + ?Sized + Unpin> Read<'a, R> {
pub(super) fn new(reader: &'a mut R, buf: &'a mut [u8]) -> Self {
Read { reader, buf }
}
}
impl<R: AsyncBufRead + ?Sized + Unpin> Future for Read<'_, R> {
type Output = Result<usize>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = &mut *self;
let buf = ready!(Pin::new(&mut this.reader).poll_fill_buf(cx))?;
let n = min(this.buf.len(), buf.len());
this.buf[..n].copy_from_slice(&buf[..n]);
Pin::new(&mut this.reader).consume(n);
Poll::Ready(Ok(n))
}
}

View file

@ -0,0 +1,34 @@
use super::super::error::{Result};
use super::super::traits::AsyncBufRead;
use core::pin::Pin;
use futures::future::Future;
use futures::ready;
use futures::task::{Context, Poll};
pub struct ReadBuf<'a, R: ?Sized> {
reader: Option<&'a mut R>,
}
impl<R: ?Sized + Unpin> Unpin for ReadBuf<'_, R> {}
impl<'a, R: AsyncBufRead + ?Sized + Unpin> ReadBuf<'a, R> {
pub(super) fn new(reader: &'a mut R) -> Self {
ReadBuf {
reader: Some(reader),
}
}
}
impl<'a, R: AsyncBufRead + ?Sized + Unpin> Future for ReadBuf<'a, R> {
type Output = Result<&'a [u8]>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = &mut *self;
let buf = ready!(Pin::new(this.reader.as_mut().unwrap()).poll_fill_buf(cx))?;
let buf: &'a [u8] = unsafe { core::mem::transmute(buf) };
this.reader = None;
Poll::Ready(Ok(buf))
}
}

View file

@ -0,0 +1,36 @@
use core::pin::Pin;
use futures::future::Future;
use futures::ready;
use futures::task::{Context, Poll};
use super::super::error::{Error, Result};
use super::super::traits::AsyncBufRead;
pub struct ReadByte<'a, R: ?Sized> {
reader: &'a mut R,
}
impl<R: ?Sized + Unpin> Unpin for ReadByte<'_, R> {}
impl<'a, R: AsyncBufRead + ?Sized + Unpin> ReadByte<'a, R> {
pub(super) fn new(reader: &'a mut R) -> Self {
Self { reader }
}
}
impl<'a, R: AsyncBufRead + ?Sized + Unpin> Future for ReadByte<'a, R> {
type Output = Result<u8>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let Self { reader } = &mut *self;
let mut reader = Pin::new(reader);
let rbuf = ready!(reader.as_mut().poll_fill_buf(cx))?;
if rbuf.len() == 0 {
return Poll::Ready(Err(Error::UnexpectedEof));
}
let r = rbuf[0];
reader.as_mut().consume(1);
Poll::Ready(Ok(r))
}
}

View file

@ -0,0 +1,48 @@
use super::super::error::{Error, Result};
use super::super::traits::AsyncBufRead;
use core::cmp::min;
use core::mem;
use core::pin::Pin;
use futures::future::Future;
use futures::ready;
use futures::task::{Context, Poll};
/// Future for the [`read_exact`](super::AsyncBufReadExt::read_exact) method.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct ReadExact<'a, R: ?Sized> {
reader: &'a mut R,
buf: &'a mut [u8],
}
impl<R: ?Sized + Unpin> Unpin for ReadExact<'_, R> {}
impl<'a, R: AsyncBufRead + ?Sized + Unpin> ReadExact<'a, R> {
pub(super) fn new(reader: &'a mut R, buf: &'a mut [u8]) -> Self {
ReadExact { reader, buf }
}
}
impl<R: AsyncBufRead + ?Sized + Unpin> Future for ReadExact<'_, R> {
type Output = Result<()>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = &mut *self;
while !this.buf.is_empty() {
let buf = ready!(Pin::new(&mut this.reader).poll_fill_buf(cx))?;
if buf.len() == 0 {
return Poll::Ready(Err(Error::UnexpectedEof));
}
let n = min(this.buf.len(), buf.len());
this.buf[..n].copy_from_slice(&buf[..n]);
Pin::new(&mut this.reader).consume(n);
{
let (_, rest) = mem::replace(&mut this.buf, &mut []).split_at_mut(n);
this.buf = rest;
}
}
Poll::Ready(Ok(()))
}
}

View file

@ -0,0 +1,48 @@
use core::cmp::min;
use core::pin::Pin;
use futures::future::Future;
use futures::ready;
use futures::task::{Context, Poll};
use super::super::error::{Error, Result};
use super::super::traits::AsyncBufRead;
pub struct ReadToEnd<'a, R: ?Sized> {
reader: &'a mut R,
buf: &'a mut [u8],
n: usize,
}
impl<R: ?Sized + Unpin> Unpin for ReadToEnd<'_, R> {}
impl<'a, R: AsyncBufRead + ?Sized + Unpin> ReadToEnd<'a, R> {
pub(super) fn new(reader: &'a mut R, buf: &'a mut [u8]) -> Self {
Self { reader, buf, n: 0 }
}
}
impl<'a, R: AsyncBufRead + ?Sized + Unpin> Future for ReadToEnd<'a, R> {
type Output = Result<usize>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let Self { reader, buf, n } = &mut *self;
let mut reader = Pin::new(reader);
loop {
let rbuf = ready!(reader.as_mut().poll_fill_buf(cx))?;
if rbuf.len() == 0 {
return Poll::Ready(Ok(*n));
}
if *n == buf.len() {
return Poll::Ready(Err(Error::Truncated));
}
// truncate data if it doesn't fit in buf
let p = min(rbuf.len(), buf.len() - *n);
buf[*n..*n + p].copy_from_slice(&rbuf[..p]);
*n += p;
reader.as_mut().consume(p);
}
}
}

View file

@ -0,0 +1,61 @@
use core::cmp::min;
use core::pin::Pin;
use futures::future::Future;
use futures::ready;
use futures::task::{Context, Poll};
use super::super::error::{Error, Result};
use super::super::traits::AsyncBufRead;
pub struct ReadWhile<'a, R: ?Sized, F> {
reader: &'a mut R,
buf: &'a mut [u8],
n: usize,
f: F,
}
impl<R: ?Sized + Unpin, F> Unpin for ReadWhile<'_, R, F> {}
impl<'a, R: AsyncBufRead + ?Sized + Unpin, F: Fn(u8) -> bool> ReadWhile<'a, R, F> {
pub(super) fn new(reader: &'a mut R, f: F, buf: &'a mut [u8]) -> Self {
Self {
reader,
f,
buf,
n: 0,
}
}
}
impl<'a, R: AsyncBufRead + ?Sized + Unpin, F: Fn(u8) -> bool> Future for ReadWhile<'a, R, F> {
type Output = Result<usize>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let Self { reader, f, buf, n } = &mut *self;
let mut reader = Pin::new(reader);
loop {
let rbuf = ready!(reader.as_mut().poll_fill_buf(cx))?;
if rbuf.len() == 0 {
return Poll::Ready(Err(Error::UnexpectedEof));
}
let (p, done) = match rbuf.iter().position(|&b| !f(b)) {
Some(p) => (p, true),
None => (rbuf.len(), false),
};
// truncate data if it doesn't fit in buf
let p2 = min(p, buf.len() - *n);
buf[*n..*n + p2].copy_from_slice(&rbuf[..p2]);
*n += p2;
// consume it all, even if it doesn't fit.
// Otherwise we can deadlock because we never read to the ending char
reader.as_mut().consume(p);
if done {
return Poll::Ready(Ok(*n));
}
}
}
}

View file

@ -0,0 +1,45 @@
use core::iter::Iterator;
use core::pin::Pin;
use futures::future::Future;
use futures::ready;
use futures::task::{Context, Poll};
use super::super::error::{Error, Result};
use super::super::traits::AsyncBufRead;
pub struct SkipWhile<'a, R: ?Sized, F> {
reader: &'a mut R,
f: F,
}
impl<R: ?Sized + Unpin, F> Unpin for SkipWhile<'_, R, F> {}
impl<'a, R: AsyncBufRead + ?Sized + Unpin, F: Fn(u8) -> bool> SkipWhile<'a, R, F> {
pub(super) fn new(reader: &'a mut R, f: F) -> Self {
Self { reader, f }
}
}
impl<'a, R: AsyncBufRead + ?Sized + Unpin, F: Fn(u8) -> bool> Future for SkipWhile<'a, R, F> {
type Output = Result<()>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let Self { reader, f } = &mut *self;
let mut reader = Pin::new(reader);
loop {
let buf = ready!(reader.as_mut().poll_fill_buf(cx))?;
if buf.len() == 0 {
return Poll::Ready(Err(Error::UnexpectedEof));
}
let (p, done) = match buf.iter().position(|b| !f(*b)) {
Some(p) => (p, true),
None => (buf.len(), false),
};
reader.as_mut().consume(p);
if done {
return Poll::Ready(Ok(()));
}
}
}
}

View file

@ -0,0 +1,40 @@
use alloc::rc::Rc;
use core::cell::UnsafeCell;
use core::pin::Pin;
use futures::task::{Context, Poll};
use super::super::error::Result;
use super::super::traits::{AsyncBufRead, AsyncWrite};
/// The readable half of an object returned from `AsyncBufRead::split`.
#[derive(Debug)]
pub struct ReadHalf<T> {
handle: Rc<UnsafeCell<T>>,
}
/// The writable half of an object returned from `AsyncBufRead::split`.
#[derive(Debug)]
pub struct WriteHalf<T> {
handle: Rc<UnsafeCell<T>>,
}
impl<T: AsyncBufRead + Unpin> AsyncBufRead for ReadHalf<T> {
fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<&[u8]>> {
Pin::new(unsafe { &mut *self.handle.get() }).poll_fill_buf(cx)
}
fn consume(self: Pin<&mut Self>, amt: usize) {
Pin::new(unsafe { &mut *self.handle.get() }).consume(amt)
}
}
impl<T: AsyncWrite + Unpin> AsyncWrite for WriteHalf<T> {
fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll<Result<usize>> {
Pin::new(unsafe { &mut *self.handle.get() }).poll_write(cx, buf)
}
}
pub fn split<T: AsyncBufRead + AsyncWrite>(t: T) -> (ReadHalf<T>, WriteHalf<T>) {
let c = Rc::new(UnsafeCell::new(t));
(ReadHalf { handle: c.clone() }, WriteHalf { handle: c })
}

View file

@ -0,0 +1,33 @@
use core::pin::Pin;
use futures::future::Future;
use futures::ready;
use futures::task::{Context, Poll};
use super::super::error::Result;
use super::super::traits::AsyncWrite;
/// Future for the [`write_all`](super::AsyncWriteExt::write_all) method.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Write<'a, W: ?Sized> {
writer: &'a mut W,
buf: &'a [u8],
}
impl<W: ?Sized + Unpin> Unpin for Write<'_, W> {}
impl<'a, W: AsyncWrite + ?Sized + Unpin> Write<'a, W> {
pub(super) fn new(writer: &'a mut W, buf: &'a [u8]) -> Self {
Write { writer, buf }
}
}
impl<W: AsyncWrite + ?Sized + Unpin> Future for Write<'_, W> {
type Output = Result<usize>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<usize>> {
let this = &mut *self;
let n = ready!(Pin::new(&mut this.writer).poll_write(cx, this.buf))?;
Poll::Ready(Ok(n))
}
}

View file

@ -0,0 +1,44 @@
use core::mem;
use core::pin::Pin;
use futures::future::Future;
use futures::ready;
use futures::task::{Context, Poll};
use super::super::error::Result;
use super::super::traits::AsyncWrite;
/// Future for the [`write_all`](super::AsyncWriteExt::write_all) method.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct WriteAll<'a, W: ?Sized> {
writer: &'a mut W,
buf: &'a [u8],
}
impl<W: ?Sized + Unpin> Unpin for WriteAll<'_, W> {}
impl<'a, W: AsyncWrite + ?Sized + Unpin> WriteAll<'a, W> {
pub(super) fn new(writer: &'a mut W, buf: &'a [u8]) -> Self {
WriteAll { writer, buf }
}
}
impl<W: AsyncWrite + ?Sized + Unpin> Future for WriteAll<'_, W> {
type Output = Result<()>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<()>> {
let this = &mut *self;
while !this.buf.is_empty() {
let n = ready!(Pin::new(&mut this.writer).poll_write(cx, this.buf))?;
{
let (_, rest) = mem::replace(&mut this.buf, &[]).split_at(n);
this.buf = rest;
}
if n == 0 {
panic!();
}
}
Poll::Ready(Ok(()))
}
}

View file

@ -0,0 +1,39 @@
use core::pin::Pin;
use futures::future::Future;
use futures::ready;
use futures::task::{Context, Poll};
use super::super::error::Result;
use super::super::traits::AsyncWrite;
/// Future for the [`write_all`](super::AsyncWriteExt::write_all) method.
#[derive(Debug)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct WriteByte<'a, W: ?Sized> {
writer: &'a mut W,
byte: u8,
}
impl<W: ?Sized + Unpin> Unpin for WriteByte<'_, W> {}
impl<'a, W: AsyncWrite + ?Sized + Unpin> WriteByte<'a, W> {
pub(super) fn new(writer: &'a mut W, byte: u8) -> Self {
WriteByte { writer, byte }
}
}
impl<W: AsyncWrite + ?Sized + Unpin> Future for WriteByte<'_, W> {
type Output = Result<()>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<()>> {
let this = &mut *self;
let buf = [this.byte; 1];
let n = ready!(Pin::new(&mut this.writer).poll_write(cx, &buf))?;
if n == 0 {
panic!();
}
assert!(n == 1);
Poll::Ready(Ok(()))
}
}

8
embassy/src/lib.rs Normal file
View file

@ -0,0 +1,8 @@
#![no_std]
#![feature(slice_fill)]
#![feature(generic_associated_types)]
#![feature(const_fn)]
pub mod flash;
pub mod util;
pub mod io;

View file

@ -0,0 +1,21 @@
use core::mem;
pub struct DropBomb {
_private: (),
}
impl DropBomb {
pub fn new() -> Self {
Self { _private: () }
}
pub fn defuse(self) {
mem::forget(self)
}
}
impl Drop for DropBomb {
fn drop(&mut self) {
depanic!("boom")
}
}

View file

@ -0,0 +1,32 @@
#![macro_use]
macro_rules! depanic {
($( $i:expr ),*) => {
{
defmt::error!($( $i ),*);
panic!();
}
}
}
macro_rules! deassert {
($cond:expr) => {
deassert!($cond, "assertion failed");
};
($cond:expr, $msg:literal) => {
{
if !$cond {
defmt::error!($msg);
panic!();
}
}
};
($cond:expr, $msg:literal, $( $i:expr ),*) => {
{
if !$cond {
defmt::error!($msg, $( $i ),*);
panic!();
}
}
};
}

70
embassy/src/util/mod.rs Normal file
View file

@ -0,0 +1,70 @@
#![macro_use]
mod macros;
mod signal;
pub use signal::*;
mod portal;
pub use portal::*;
mod waker_store;
pub use waker_store::*;
mod drop_bomb;
pub use drop_bomb::*;
use defmt::{warn, error};
pub trait Dewrap<T> {
/// dewrap = defmt unwrap
fn dewrap(self) -> T;
/// dexpect = defmt expect
fn dexpect<M: defmt::Format>(self, msg: M) -> T;
fn dewarn<M: defmt::Format>(self, msg: M) -> Self;
}
impl<T> Dewrap<T> for Option<T> {
fn dewrap(self) -> T {
match self {
Some(t) => t,
None => depanic!("unwrap failed: enum is none"),
}
}
fn dexpect<M: defmt::Format>(self, msg: M) -> T {
match self {
Some(t) => t,
None => depanic!("unexpected None: {:?}", msg),
}
}
fn dewarn<M: defmt::Format>(self, msg: M) -> Self {
if self.is_none() {
warn!("{:?} is none", msg);
}
self
}
}
impl<T, E: defmt::Format> Dewrap<T> for Result<T, E> {
fn dewrap(self) -> T {
match self {
Ok(t) => t,
Err(e) => depanic!("unwrap failed: {:?}", e),
}
}
fn dexpect<M: defmt::Format>(self, msg: M) -> T {
match self {
Ok(t) => t,
Err(e) => depanic!("unexpected error: {:?}: {:?}", msg, e),
}
}
fn dewarn<M: defmt::Format>(self, msg: M) -> Self {
if let Err(e) = &self {
warn!("{:?} err: {:?}", msg, e);
}
self
}
}

125
embassy/src/util/portal.rs Normal file
View file

@ -0,0 +1,125 @@
use core::cell::UnsafeCell;
use core::future::Future;
use core::mem;
use core::mem::MaybeUninit;
use crate::util::*;
/// Utility to call a closure across tasks.
pub struct Portal<T> {
state: UnsafeCell<State<T>>,
}
enum State<T> {
None,
Running,
Waiting(*mut dyn FnMut(T)),
}
impl<T> Portal<T> {
pub const fn new() -> Self {
Self {
state: UnsafeCell::new(State::None),
}
}
pub fn call(&self, val: T) {
unsafe {
match *self.state.get() {
State::None => {}
State::Running => depanic!("Portall::call() called reentrantly"),
State::Waiting(func) => (*func)(val),
}
}
}
pub fn wait_once<'a, R, F>(&'a self, mut func: F) -> impl Future<Output = R> + 'a
where
F: FnMut(T) -> R + 'a,
{
async move {
let bomb = DropBomb::new();
let signal = Signal::new();
let mut result: MaybeUninit<R> = MaybeUninit::uninit();
let mut call_func = |val: T| {
unsafe {
let state = &mut *self.state.get();
*state = State::None;
result.as_mut_ptr().write(func(val))
};
signal.signal(());
};
let func_ptr: *mut dyn FnMut(T) = &mut call_func as _;
let func_ptr: *mut dyn FnMut(T) = unsafe { mem::transmute(func_ptr) };
unsafe {
let state = &mut *self.state.get();
match state {
State::None => {}
_ => depanic!("Multiple tasks waiting on same portal"),
}
*state = State::Waiting(func_ptr);
}
signal.wait().await;
bomb.defuse();
unsafe { result.assume_init() }
}
}
pub fn wait_many<'a, R, F>(&'a self, mut func: F) -> impl Future<Output = R> + 'a
where
F: FnMut(T) -> Option<R> + 'a,
{
async move {
let bomb = DropBomb::new();
let signal = Signal::new();
let mut result: MaybeUninit<R> = MaybeUninit::uninit();
let mut call_func = |val: T| {
unsafe {
let state = &mut *self.state.get();
let func_ptr = match *state {
State::Waiting(p) => p,
_ => unreachable!(),
};
// Set state to Running while running the function to avoid reentrancy.
*state = State::Running;
*state = match func(val) {
None => State::Waiting(func_ptr),
Some(res) => {
result.as_mut_ptr().write(res);
signal.signal(());
State::None
}
};
};
};
let func_ptr: *mut dyn FnMut(T) = &mut call_func as _;
let func_ptr: *mut dyn FnMut(T) = unsafe { mem::transmute(func_ptr) };
unsafe {
let state = &mut *self.state.get();
match *state {
State::None => {}
_ => depanic!("Multiple tasks waiting on same portal"),
}
*state = State::Waiting(func_ptr);
}
signal.wait().await;
bomb.defuse();
unsafe { result.assume_init() }
}
}
}

View file

@ -0,0 +1,70 @@
use core::cell::UnsafeCell;
use core::future::Future;
use core::mem;
use core::pin::Pin;
use core::task::{Context, Poll, Waker};
pub struct Signal<T> {
state: UnsafeCell<State<T>>,
}
enum State<T> {
None,
Waiting(Waker),
Signaled(T),
}
unsafe impl<T: Send> Send for Signal<T> {}
unsafe impl<T: Send> Sync for Signal<T> {}
impl<T: Send> Signal<T> {
pub const fn new() -> Self {
Self {
state: UnsafeCell::new(State::None),
}
}
pub fn signal(&self, val: T) {
unsafe {
cortex_m::interrupt::free(|_| {
let state = &mut *self.state.get();
match mem::replace(state, State::Signaled(val)) {
State::Waiting(waker) => waker.wake(),
_ => {}
}
})
}
}
pub fn wait<'a>(&'a self) -> impl Future<Output = T> + 'a {
WaitFuture { signal: self }
}
}
struct WaitFuture<'a, T> {
signal: &'a Signal<T>,
}
impl<'a, T: Send> Future for WaitFuture<'a, T> {
type Output = T;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T> {
unsafe {
cortex_m::interrupt::free(|_| {
let state = &mut *self.signal.state.get();
match state {
State::None => {
*state = State::Waiting(cx.waker().clone());
Poll::Pending
}
State::Waiting(w) if w.will_wake(cx.waker()) => Poll::Pending,
State::Waiting(_) => depanic!("waker overflow"),
State::Signaled(_) => match mem::replace(state, State::None) {
State::Signaled(res) => Poll::Ready(res),
_ => unreachable!(),
},
}
})
}
}
}

View file

@ -0,0 +1,23 @@
use core::task::Waker;
pub struct WakerStore {
waker: Option<Waker>,
}
impl WakerStore {
pub const fn new() -> Self {
Self { waker: None }
}
pub fn store(&mut self, w: &Waker) {
match self.waker {
Some(ref w2) if (w2.will_wake(w)) => {}
Some(_) => panic!("Waker overflow"),
None => self.waker = Some(w.clone()),
}
}
pub fn wake(&mut self) {
self.waker.take().map(|w| w.wake());
}
}

31
examples/Cargo.toml Normal file
View file

@ -0,0 +1,31 @@
[package]
authors = ["Dario Nieuwenhuis <dirbaio@dirbaio.net>"]
edition = "2018"
name = "embassy-examples"
version = "0.1.0"
[features]
default = [
"defmt-default",
]
defmt-default = []
defmt-trace = []
defmt-debug = []
defmt-info = []
defmt-warn = []
defmt-error = []
[dependencies]
cortex-m = { version = "0.6.3" }
cortex-m-rt = "0.6.12"
defmt = "0.1.0"
embedded-hal = { version = "0.2.4" }
defmt-rtt = "0.1.0"
panic-probe = "0.1.0"
nrf52840-hal = { version = "0.11.0" }
embassy = { version = "0.1.0", path = "../embassy" }
embassy-nrf = { version = "0.1.0", path = "../embassy-nrf", features = ["defmt-trace", "nrf52840"] }
static-executor = { version = "0.1.0", features=["defmt"]}
static-executor-cortex-m = { version = "0.1.0" }
futures = { version = "0.3.5", default-features = false }

31
examples/build.rs Normal file
View file

@ -0,0 +1,31 @@
//! This build script copies the `memory.x` file from the crate root into
//! a directory where the linker can always find it at build time.
//! For many projects this is optional, as the linker always searches the
//! project root directory -- wherever `Cargo.toml` is. However, if you
//! are using a workspace or have a more complicated build setup, this
//! build script becomes required. Additionally, by requesting that
//! Cargo re-run the build script whenever `memory.x` is changed,
//! updating `memory.x` ensures a rebuild of the application with the
//! new memory settings.
use std::env;
use std::fs::File;
use std::io::Write;
use std::path::PathBuf;
fn main() {
// Put `memory.x` in our output directory and ensure it's
// on the linker search path.
let out = &PathBuf::from(env::var_os("OUT_DIR").unwrap());
File::create(out.join("memory.x"))
.unwrap()
.write_all(include_bytes!("memory.x"))
.unwrap();
println!("cargo:rustc-link-search={}", out.display());
// By default, Cargo will re-run a build script whenever
// any file in the project changes. By specifying `memory.x`
// here, we ensure the build script is only re-run when
// `memory.x` is changed.
println!("cargo:rerun-if-changed=memory.x");
}

7
examples/memory.x Normal file
View file

@ -0,0 +1,7 @@
MEMORY
{
/* NOTE 1 K = 1 KiBi = 1024 bytes */
/* These values correspond to the NRF52840 with Softdevices S140 7.0.1 */
FLASH : ORIGIN = 0x00000000, LENGTH = 1024K
RAM : ORIGIN = 0x20000000, LENGTH = 256K
}

123
examples/src/bin/qspi.rs Normal file
View file

@ -0,0 +1,123 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
#[path = "../example_common.rs"]
mod example_common;
use example_common::*;
use cortex_m_rt::entry;
use embassy::flash::Flash;
use embassy_nrf::qspi;
use nrf52840_hal::gpio;
const PAGE_SIZE: usize = 4096;
// Workaround for alignment requirements.
// Nicer API will probably come in the future.
#[repr(C, align(4))]
struct AlignedBuf([u8; 4096]);
#[static_executor::task]
async fn run() {
let p = embassy_nrf::pac::Peripherals::take().dewrap();
let port0 = gpio::p0::Parts::new(p.P0);
let pins = qspi::Pins {
csn: port0
.p0_17
.into_push_pull_output(gpio::Level::High)
.degrade(),
sck: port0
.p0_19
.into_push_pull_output(gpio::Level::High)
.degrade(),
io0: port0
.p0_20
.into_push_pull_output(gpio::Level::High)
.degrade(),
io1: port0
.p0_21
.into_push_pull_output(gpio::Level::High)
.degrade(),
io2: Some(
port0
.p0_22
.into_push_pull_output(gpio::Level::High)
.degrade(),
),
io3: Some(
port0
.p0_23
.into_push_pull_output(gpio::Level::High)
.degrade(),
),
};
let config = qspi::Config {
pins,
read_opcode: qspi::ReadOpcode::READ4IO,
write_opcode: qspi::WriteOpcode::PP4IO,
xip_offset: 0,
write_page_size: qspi::WritePageSize::_256BYTES,
};
let mut q = qspi::Qspi::new(p.QSPI, config);
let mut id = [1; 3];
q.custom_instruction(0x9F, &[], &mut id).await.unwrap();
info!("id: {:[u8]}", id);
// Read status register
let mut status = [0; 1];
q.custom_instruction(0x05, &[], &mut status).await.unwrap();
info!("status: {:?}", status[0]);
if status[0] & 0x40 == 0 {
status[0] |= 0x40;
q.custom_instruction(0x01, &status, &mut []).await.unwrap();
info!("enabled quad in status");
}
let mut buf = AlignedBuf([0u8; PAGE_SIZE]);
let pattern = |a: u32| (a ^ (a >> 8) ^ (a >> 16) ^ (a >> 24)) as u8;
for i in 0..8 {
info!("page {:?}: erasing... ", i);
q.erase(i * PAGE_SIZE).await.unwrap();
for j in 0..PAGE_SIZE {
buf.0[j] = pattern((j + i * PAGE_SIZE) as u32);
}
info!("programming...");
q.write(i * PAGE_SIZE, &buf.0).await.unwrap();
}
for i in 0..8 {
info!("page {:?}: reading... ", i);
q.read(i * PAGE_SIZE, &mut buf.0).await.unwrap();
info!("verifying...");
for j in 0..PAGE_SIZE {
assert_eq!(buf.0[j], pattern((j + i * PAGE_SIZE) as u32));
}
}
info!("done!")
}
#[entry]
fn main() -> ! {
info!("Hello World!");
unsafe {
run.spawn().dewrap();
static_executor::run();
}
}

72
examples/src/bin/uart.rs Normal file
View file

@ -0,0 +1,72 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
#[path = "../example_common.rs"]
mod example_common;
use example_common::*;
use cortex_m_rt::entry;
use embassy::io::{AsyncBufRead, AsyncBufReadExt, AsyncWrite, AsyncWriteExt};
use embassy_nrf::uarte;
use futures::pin_mut;
use nrf52840_hal::gpio;
#[static_executor::task]
async fn run() {
let p = embassy_nrf::pac::Peripherals::take().dewrap();
let port0 = gpio::p0::Parts::new(p.P0);
let pins = uarte::Pins {
rxd: port0.p0_08.into_floating_input().degrade(),
txd: port0
.p0_06
.into_push_pull_output(gpio::Level::Low)
.degrade(),
cts: None,
rts: None,
};
let u = uarte::Uarte::new(
p.UARTE0,
pins,
uarte::Parity::EXCLUDED,
uarte::Baudrate::BAUD115200,
);
pin_mut!(u);
info!("uarte initialized!");
u.write_all(b"Hello!\r\n").await.dewrap();
info!("wrote hello in uart!");
// Simple demo, reading 8-char chunks and echoing them back reversed.
loop {
info!("reading...");
let mut buf = [0u8; 8];
u.read_exact(&mut buf).await.dewrap();
info!("read done, got {:[u8]}", buf);
// Reverse buf
for i in 0..4 {
let tmp = buf[i];
buf[i] = buf[7 - i];
buf[7 - i] = tmp;
}
info!("writing...");
u.write_all(&buf).await.dewrap();
info!("write done");
}
}
#[entry]
fn main() -> ! {
info!("Hello World!");
unsafe {
run.spawn().dewrap();
static_executor::run();
}
}

View file

@ -0,0 +1,68 @@
#![macro_use]
use defmt_rtt as _; // global logger
use nrf52840_hal as _;
use panic_probe as _;
use static_executor_cortex_m as _;
pub use defmt::{info, intern};
use core::sync::atomic::{AtomicUsize, Ordering};
#[defmt::timestamp]
fn timestamp() -> u64 {
static COUNT: AtomicUsize = AtomicUsize::new(0);
// NOTE(no-CAS) `timestamps` runs with interrupts disabled
let n = COUNT.load(Ordering::Relaxed);
COUNT.store(n + 1, Ordering::Relaxed);
n as u64
}
macro_rules! depanic {
($( $i:expr ),*) => {
{
defmt::error!($( $i ),*);
panic!();
}
}
}
pub trait Dewrap<T> {
/// dewrap = defmt unwrap
fn dewrap(self) -> T;
/// dexpect = defmt expect
fn dexpect<M: defmt::Format>(self, msg: M) -> T;
}
impl<T> Dewrap<T> for Option<T> {
fn dewrap(self) -> T {
match self {
Some(t) => t,
None => depanic!("Dewrap failed: enum is none"),
}
}
fn dexpect<M: defmt::Format>(self, msg: M) -> T {
match self {
Some(t) => t,
None => depanic!("Unexpected None: {:?}", msg),
}
}
}
impl<T, E: defmt::Format> Dewrap<T> for Result<T, E> {
fn dewrap(self) -> T {
match self {
Ok(t) => t,
Err(e) => depanic!("Dewrap failed: {:?}", e),
}
}
fn dexpect<M: defmt::Format>(self, msg: M) -> T {
match self {
Ok(t) => t,
Err(e) => depanic!("Unexpected error: {:?}: {:?}", msg, e),
}
}
}