Merge branch 'i2c_timeout2_v2' into i2c_timeout2

This commit is contained in:
chemicstry 2022-10-24 21:50:29 +03:00
commit 9ad7e85288
2 changed files with 182 additions and 63 deletions

View file

@ -147,14 +147,23 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}
}
unsafe fn master_read(address: u8, length: usize, stop: Stop, reload: bool, restart: bool) {
unsafe fn master_read(
address: u8,
length: usize,
stop: Stop,
reload: bool,
restart: bool,
check_timeout: impl Fn() -> Result<(), Error>,
) -> Result<(), Error> {
assert!(length < 256);
if !restart {
// Wait for any previous address sequence to end
// automatically. This could be up to 50% of a bus
// cycle (ie. up to 0.5/freq)
while T::regs().cr2().read().start() {}
while T::regs().cr2().read().start() {
check_timeout()?;
}
}
// Set START and prepare to receive bytes into
@ -176,15 +185,19 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
w.set_autoend(stop.autoend());
w.set_reload(reload);
});
Ok(())
}
unsafe fn master_write(address: u8, length: usize, stop: Stop, reload: bool) {
unsafe fn master_write(address: u8, length: usize, stop: Stop, reload: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
assert!(length < 256);
// Wait for any previous address sequence to end
// automatically. This could be up to 50% of a bus
// cycle (ie. up to 0.5/freq)
while T::regs().cr2().read().start() {}
while T::regs().cr2().read().start() {
check_timeout()?;
}
let reload = if reload {
i2c::vals::Reload::NOTCOMPLETED
@ -204,12 +217,16 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
w.set_autoend(stop.autoend());
w.set_reload(reload);
});
Ok(())
}
unsafe fn master_continue(length: usize, reload: bool) {
unsafe fn master_continue(length: usize, reload: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
assert!(length < 256 && length > 0);
while !T::regs().isr().read().tcr() {}
while !T::regs().isr().read().tcr() {
check_timeout()?;
}
let reload = if reload {
i2c::vals::Reload::NOTCOMPLETED
@ -221,6 +238,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
w.set_nbytes(length as u8);
w.set_reload(reload);
});
Ok(())
}
fn flush_txdr(&self) {
@ -243,7 +262,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
//}
}
fn wait_txe(&self) -> Result<(), Error> {
fn wait_txe(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
loop {
unsafe {
let isr = T::regs().isr().read();
@ -261,10 +280,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
return Err(Error::Nack);
}
}
check_timeout()?;
}
}
fn wait_rxne(&self) -> Result<(), Error> {
fn wait_rxne(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
loop {
unsafe {
let isr = T::regs().isr().read();
@ -282,10 +303,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
return Err(Error::Nack);
}
}
check_timeout()?;
}
}
fn wait_tc(&self) -> Result<(), Error> {
fn wait_tc(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
loop {
unsafe {
let isr = T::regs().isr().read();
@ -303,10 +326,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
return Err(Error::Nack);
}
}
check_timeout()?;
}
}
fn read_internal(&mut self, address: u8, buffer: &mut [u8], restart: bool) -> Result<(), Error> {
fn read_internal(&mut self, address: u8, buffer: &mut [u8], restart: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
let completed_chunks = buffer.len() / 255;
let total_chunks = if completed_chunks * 255 == buffer.len() {
completed_chunks
@ -322,20 +347,21 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Stop::Automatic,
last_chunk_idx != 0,
restart,
);
&check_timeout
)?;
}
for (number, chunk) in buffer.chunks_mut(255).enumerate() {
if number != 0 {
// NOTE(unsafe) We have &mut self
unsafe {
Self::master_continue(chunk.len(), number != last_chunk_idx);
Self::master_continue(chunk.len(), number != last_chunk_idx, &check_timeout)?;
}
}
for byte in chunk {
// Wait until we have received something
self.wait_rxne()?;
self.wait_rxne(&check_timeout)?;
unsafe {
*byte = T::regs().rxdr().read().rxdata();
@ -345,7 +371,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(())
}
fn write_internal(&mut self, address: u8, bytes: &[u8], send_stop: bool) -> Result<(), Error> {
fn write_internal(&mut self, address: u8, bytes: &[u8], send_stop: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
let completed_chunks = bytes.len() / 255;
let total_chunks = if completed_chunks * 255 == bytes.len() {
completed_chunks
@ -359,14 +385,14 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// ST SAD+W
// NOTE(unsafe) We have &mut self
unsafe {
Self::master_write(address, bytes.len().min(255), Stop::Software, last_chunk_idx != 0);
Self::master_write(address, bytes.len().min(255), Stop::Software, last_chunk_idx != 0, &check_timeout)?;
}
for (number, chunk) in bytes.chunks(255).enumerate() {
if number != 0 {
// NOTE(unsafe) We have &mut self
unsafe {
Self::master_continue(chunk.len(), number != last_chunk_idx);
Self::master_continue(chunk.len(), number != last_chunk_idx, &check_timeout)?;
}
}
@ -374,7 +400,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until we are allowed to send data
// (START has been ACKed or last byte when
// through)
self.wait_txe()?;
self.wait_txe(&check_timeout)?;
unsafe {
T::regs().txdr().write(|w| w.set_txdata(*byte));
@ -382,7 +408,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}
}
// Wait until the write finishes
self.wait_tc()?;
self.wait_tc(&check_timeout)?;
if send_stop {
self.master_stop();
@ -396,6 +422,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
bytes: &[u8],
first_slice: bool,
last_slice: bool,
check_timeout: impl Fn() -> Result<(), Error>
) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
@ -447,11 +474,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
total_len.min(255),
Stop::Software,
(total_chunks != 1) || !last_slice,
);
&check_timeout
)?;
}
} else {
unsafe {
Self::master_continue(total_len.min(255), (total_chunks != 1) || !last_slice);
Self::master_continue(total_len.min(255), (total_chunks != 1) || !last_slice, &check_timeout)?;
T::regs().cr1().modify(|w| w.set_tcie(true));
}
}
@ -461,32 +489,34 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
let chunks_transferred = state.chunks_transferred.load(Ordering::Relaxed);
if chunks_transferred == total_chunks {
return Poll::Ready(());
return Poll::Ready(Ok(()));
} else if chunks_transferred != 0 {
remaining_len = remaining_len.saturating_sub(255);
let last_piece = (chunks_transferred + 1 == total_chunks) && last_slice;
// NOTE(unsafe) self.tx_dma does not fiddle with the i2c registers
unsafe {
Self::master_continue(remaining_len.min(255), !last_piece);
if let Err(e) = Self::master_continue(remaining_len.min(255), !last_piece, &check_timeout) {
return Poll::Ready(Err(e));
}
T::regs().cr1().modify(|w| w.set_tcie(true));
}
}
Poll::Pending
})
.await;
.await?;
dma_transfer.await;
if last_slice {
// This should be done already
self.wait_tc()?;
self.wait_tc(&check_timeout)?;
self.master_stop();
}
Ok(())
}
async fn read_dma_internal(&mut self, address: u8, buffer: &mut [u8], restart: bool) -> Result<(), Error>
async fn read_dma_internal(&mut self, address: u8, buffer: &mut [u8], restart: bool, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
{
@ -527,7 +557,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers
unsafe {
Self::master_read(address, total_len.min(255), Stop::Software, total_chunks != 1, restart);
Self::master_read(address, total_len.min(255), Stop::Software, total_chunks != 1, restart, &check_timeout)?;
}
poll_fn(|cx| {
@ -535,25 +565,27 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
let chunks_transferred = state.chunks_transferred.load(Ordering::Relaxed);
if chunks_transferred == total_chunks {
return Poll::Ready(());
return Poll::Ready(Ok(()));
} else if chunks_transferred != 0 {
remaining_len = remaining_len.saturating_sub(255);
let last_piece = chunks_transferred + 1 == total_chunks;
// NOTE(unsafe) self.rx_dma does not fiddle with the i2c registers
unsafe {
Self::master_continue(remaining_len.min(255), !last_piece);
if let Err(e) = Self::master_continue(remaining_len.min(255), !last_piece, &check_timeout) {
return Poll::Ready(Err(e))
}
T::regs().cr1().modify(|w| w.set_tcie(true));
}
}
Poll::Pending
})
.await;
.await?;
dma_transfer.await;
// This should be done already
self.wait_tc()?;
self.wait_tc(&check_timeout)?;
self.master_stop();
Ok(())
}
@ -561,18 +593,25 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// =========================
// Async public API
pub async fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error>
pub async fn write_timeout(&mut self, address: u8, bytes: &[u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
if bytes.is_empty() {
self.write_internal(address, bytes, true)
self.write_internal(address, bytes, true, &check_timeout)
} else {
self.write_dma_internal(address, bytes, true, true).await
self.write_dma_internal(address, bytes, true, true, &check_timeout).await
}
}
pub async fn write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error>
pub async fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
self.write_timeout(address, bytes, || Ok(())).await
}
pub async fn write_vectored_timeout(&mut self, address: u8, bytes: &[&[u8]], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
@ -587,63 +626,97 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
let next = iter.next();
let is_last = next.is_none();
self.write_dma_internal(address, c, first, is_last).await?;
self.write_dma_internal(address, c, first, is_last, &check_timeout).await?;
first = false;
current = next;
}
Ok(())
}
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error>
pub async fn write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
self.write_vectored_timeout(address, bytes, || Ok(())).await
}
pub async fn read_timeout(&mut self, address: u8, buffer: &mut [u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
{
if buffer.is_empty() {
self.read_internal(address, buffer, false)
self.read_internal(address, buffer, false, &check_timeout)
} else {
self.read_dma_internal(address, buffer, false).await
self.read_dma_internal(address, buffer, false, &check_timeout).await
}
}
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
{
self.read_timeout(address, buffer, || Ok(())).await
}
pub async fn write_read_timeout(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error>
where
TXDMA: super::TxDma<T>,
RXDMA: super::RxDma<T>,
{
if bytes.is_empty() {
self.write_internal(address, bytes, false, &check_timeout)?;
} else {
self.write_dma_internal(address, bytes, true, true, &check_timeout).await?;
}
if buffer.is_empty() {
self.read_internal(address, buffer, true, &check_timeout)?;
} else {
self.read_dma_internal(address, buffer, true, &check_timeout).await?;
}
Ok(())
}
pub async fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error>
where
TXDMA: super::TxDma<T>,
RXDMA: super::RxDma<T>,
{
if bytes.is_empty() {
self.write_internal(address, bytes, false)?;
} else {
self.write_dma_internal(address, bytes, true, true).await?;
}
if buffer.is_empty() {
self.read_internal(address, buffer, true)?;
} else {
self.read_dma_internal(address, buffer, true).await?;
}
Ok(())
self.write_read_timeout(address, bytes, buffer, || Ok(())).await
}
// =========================
// Blocking public API
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
self.read_internal(address, buffer, false)
pub fn blocking_read_timeout(&mut self, address: u8, buffer: &mut [u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
self.read_internal(address, buffer, false, &check_timeout)
// Automatic Stop
}
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
self.blocking_read_timeout(address, buffer, || Ok(()))
}
pub fn blocking_write_timeout(&mut self, address: u8, bytes: &[u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
self.write_internal(address, bytes, true, &check_timeout)
}
pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> {
self.write_internal(address, bytes, true)
self.blocking_write_timeout(address, bytes, || Ok(()))
}
pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
self.write_internal(address, bytes, false)?;
self.read_internal(address, buffer, true)
pub fn blocking_write_read_timeout(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
self.write_internal(address, bytes, false, &check_timeout)?;
self.read_internal(address, buffer, true, &check_timeout)
// Automatic Stop
}
pub fn blocking_write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error> {
pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
self.blocking_write_read_timeout(address, bytes, buffer, || Ok(()))
}
pub fn blocking_write_vectored_timeout(&mut self, address: u8, bytes: &[&[u8]], check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
if bytes.is_empty() {
return Err(Error::ZeroLengthTransfer);
}
@ -657,7 +730,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
first_length.min(255),
Stop::Software,
(first_length > 255) || (last_slice_index != 0),
);
&check_timeout
)?;
}
for (idx, slice) in bytes.iter().enumerate() {
@ -673,7 +747,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
if idx != 0 {
// NOTE(unsafe) We have &mut self
unsafe {
Self::master_continue(slice_len.min(255), (idx != last_slice_index) || (slice_len > 255));
Self::master_continue(slice_len.min(255), (idx != last_slice_index) || (slice_len > 255), &check_timeout)?;
}
}
@ -681,7 +755,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
if number != 0 {
// NOTE(unsafe) We have &mut self
unsafe {
Self::master_continue(chunk.len(), (number != last_chunk_idx) || (idx != last_slice_index));
Self::master_continue(chunk.len(), (number != last_chunk_idx) || (idx != last_slice_index), &check_timeout)?;
}
}
@ -689,7 +763,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until we are allowed to send data
// (START has been ACKed or last byte when
// through)
self.wait_txe()?;
self.wait_txe(&check_timeout)?;
// Put byte on the wire
//self.i2c.txdr.write(|w| w.txdata().bits(*byte));
@ -700,11 +774,15 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}
}
// Wait until the write finishes
self.wait_tc()?;
self.wait_tc(&check_timeout)?;
self.master_stop();
Ok(())
}
pub fn blocking_write_vectored(&mut self, address: u8, bytes: &[&[u8]]) -> Result<(), Error> {
self.blocking_write_vectored_timeout(address, bytes, || Ok(()))
}
}
mod eh02 {

View file

@ -0,0 +1,41 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::i2c::{Error, I2c, TimeoutI2c};
use embassy_stm32::interrupt;
use embassy_stm32::time::Hertz;
use embassy_time::Duration;
use {defmt_rtt as _, panic_probe as _};
const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
#[embassy_executor::main]
async fn main(_spawner: Spawner) -> ! {
info!("Hello world!");
let p = embassy_stm32::init(Default::default());
let irq = interrupt::take!(I2C2_EV);
let mut i2c = I2c::new(
p.I2C2,
p.PB10,
p.PB11,
irq,
p.DMA1_CH4,
p.DMA1_CH5,
Hertz(100_000),
Default::default(),
);
let mut timeout_i2c = TimeoutI2c::new(&mut i2c, Duration::from_millis(1000));
let mut data = [0u8; 1];
match timeout_i2c.blocking_write_read(ADDRESS, &[WHOAMI], &mut data) {
Ok(()) => info!("Whoami: {}", data[0]),
Err(Error::Timeout) => error!("Operation timed out"),
Err(e) => error!("I2c Error: {:?}", e),
}
}