Add RTC timer for stm32f4
This commit is contained in:
parent
e454969000
commit
9d895a6383
7 changed files with 494 additions and 4 deletions
|
@ -1,5 +1,5 @@
|
|||
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
|
||||
runner = "probe-run --chip STM32F411CEUx --defmt"
|
||||
runner = "probe-run --chip STM32F401CCUx --defmt"
|
||||
|
||||
rustflags = [
|
||||
# LLD (shipped with the Rust toolchain) is used as the default linker
|
||||
|
|
|
@ -18,7 +18,7 @@ defmt-error = []
|
|||
|
||||
[dependencies]
|
||||
embassy = { version = "0.1.0", path = "../embassy", features = ["defmt", "defmt-trace"] }
|
||||
embassy-stm32f4 = { version = "*", path = "../embassy-stm32f4", features = ["stm32f405"] }
|
||||
embassy-stm32f4 = { version = "*", path = "../embassy-stm32f4", features = ["stm32f401"] }
|
||||
|
||||
defmt = "0.1.3"
|
||||
defmt-rtt = "0.1.0"
|
||||
|
@ -27,6 +27,6 @@ cortex-m = "0.7.1"
|
|||
cortex-m-rt = "0.6.13"
|
||||
embedded-hal = { version = "0.2.4" }
|
||||
panic-probe = "0.1.0"
|
||||
stm32f4xx-hal = { version = "0.8.3", features = ["rt", "stm32f405"], git = "https://github.com/stm32-rs/stm32f4xx-hal.git"}
|
||||
stm32f4xx-hal = { version = "0.8.3", features = ["rt", "stm32f401"], git = "https://github.com/stm32-rs/stm32f4xx-hal.git"}
|
||||
futures = { version = "0.3.8", default-features = false, features = ["async-await"] }
|
||||
rtt-target = { version = "0.3", features = ["cortex-m"] }
|
||||
|
|
65
embassy-stm32f4-examples/src/bin/rtc_async.rs
Normal file
65
embassy-stm32f4-examples/src/bin/rtc_async.rs
Normal file
|
@ -0,0 +1,65 @@
|
|||
#![no_std]
|
||||
#![no_main]
|
||||
#![feature(type_alias_impl_trait)]
|
||||
|
||||
#[path = "../example_common.rs"]
|
||||
mod example_common;
|
||||
use example_common::*;
|
||||
|
||||
use cortex_m_rt::entry;
|
||||
use defmt::panic;
|
||||
use embassy::executor::{task, Executor};
|
||||
use embassy::time::{Duration, Timer};
|
||||
use embassy::util::Forever;
|
||||
use embassy_stm32f4::{interrupt, pac, rtc};
|
||||
use stm32f4xx_hal::prelude::*;
|
||||
|
||||
#[task]
|
||||
async fn run1() {
|
||||
loop {
|
||||
info!("BIG INFREQUENT TICK");
|
||||
Timer::after(Duration::from_ticks(32768 * 2)).await;
|
||||
}
|
||||
}
|
||||
|
||||
#[task]
|
||||
async fn run2() {
|
||||
loop {
|
||||
info!("tick");
|
||||
Timer::after(Duration::from_ticks(13000)).await;
|
||||
}
|
||||
}
|
||||
|
||||
static RTC: Forever<rtc::RTC<pac::TIM2>> = Forever::new();
|
||||
static ALARM: Forever<rtc::Alarm<pac::TIM2>> = Forever::new();
|
||||
static EXECUTOR: Forever<Executor> = Forever::new();
|
||||
|
||||
#[entry]
|
||||
fn main() -> ! {
|
||||
info!("Hello World!");
|
||||
|
||||
let p = unwrap!(pac::Peripherals::take());
|
||||
|
||||
p.RCC.ahb1enr.modify(|_, w| w.dma1en().enabled());
|
||||
let rcc = p.RCC.constrain();
|
||||
let clocks = rcc.cfgr.freeze();
|
||||
|
||||
p.DBGMCU.cr.modify(|_, w| {
|
||||
w.dbg_sleep().set_bit();
|
||||
w.dbg_standby().set_bit();
|
||||
w.dbg_stop().set_bit()
|
||||
});
|
||||
|
||||
let rtc = RTC.put(rtc::RTC::new(p.TIM2, interrupt::take!(TIM2), clocks));
|
||||
rtc.start();
|
||||
|
||||
unsafe { embassy::time::set_clock(rtc) };
|
||||
|
||||
let alarm = ALARM.put(rtc.alarm1());
|
||||
let executor = EXECUTOR.put(Executor::new());
|
||||
executor.set_alarm(alarm);
|
||||
executor.run(|spawner| {
|
||||
unwrap!(spawner.spawn(run1()));
|
||||
unwrap!(spawner.spawn(run2()));
|
||||
});
|
||||
}
|
|
@ -94,6 +94,66 @@ where
|
|||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "stm32f401")]
|
||||
mod irqs {
|
||||
use super::*;
|
||||
declare!(PVD);
|
||||
declare!(TAMP_STAMP);
|
||||
declare!(RTC_WKUP);
|
||||
declare!(FLASH);
|
||||
declare!(RCC);
|
||||
declare!(EXTI0);
|
||||
declare!(EXTI1);
|
||||
declare!(EXTI2);
|
||||
declare!(EXTI3);
|
||||
declare!(EXTI4);
|
||||
declare!(DMA1_STREAM0);
|
||||
declare!(DMA1_STREAM1);
|
||||
declare!(DMA1_STREAM2);
|
||||
declare!(DMA1_STREAM3);
|
||||
declare!(DMA1_STREAM4);
|
||||
declare!(DMA1_STREAM5);
|
||||
declare!(DMA1_STREAM6);
|
||||
declare!(ADC);
|
||||
declare!(EXTI9_5);
|
||||
declare!(TIM1_BRK_TIM9);
|
||||
declare!(TIM1_UP_TIM10);
|
||||
declare!(TIM1_TRG_COM_TIM11);
|
||||
declare!(TIM1_CC);
|
||||
declare!(TIM2);
|
||||
declare!(TIM3);
|
||||
declare!(TIM4);
|
||||
declare!(I2C1_EV);
|
||||
declare!(I2C1_ER);
|
||||
declare!(I2C2_EV);
|
||||
declare!(I2C2_ER);
|
||||
declare!(SPI1);
|
||||
declare!(SPI2);
|
||||
declare!(USART1);
|
||||
declare!(USART2);
|
||||
declare!(EXTI15_10);
|
||||
declare!(RTC_ALARM);
|
||||
declare!(OTG_FS_WKUP);
|
||||
declare!(DMA1_STREAM7);
|
||||
declare!(SDIO);
|
||||
declare!(TIM5);
|
||||
declare!(SPI3);
|
||||
declare!(DMA2_STREAM0);
|
||||
declare!(DMA2_STREAM1);
|
||||
declare!(DMA2_STREAM2);
|
||||
declare!(DMA2_STREAM3);
|
||||
declare!(DMA2_STREAM4);
|
||||
declare!(OTG_FS);
|
||||
declare!(DMA2_STREAM5);
|
||||
declare!(DMA2_STREAM6);
|
||||
declare!(DMA2_STREAM7);
|
||||
declare!(USART6);
|
||||
declare!(I2C3_EV);
|
||||
declare!(I2C3_ER);
|
||||
declare!(FPU);
|
||||
declare!(SPI4);
|
||||
}
|
||||
|
||||
#[cfg(feature = "stm32f405")]
|
||||
mod irqs {
|
||||
use super::*;
|
||||
|
|
|
@ -312,6 +312,7 @@ pub(crate) mod fmt;
|
|||
|
||||
pub mod exti;
|
||||
pub mod interrupt;
|
||||
pub mod rtc;
|
||||
pub mod serial;
|
||||
|
||||
pub use cortex_m_rt::interrupt;
|
||||
|
|
364
embassy-stm32f4/src/rtc.rs
Normal file
364
embassy-stm32f4/src/rtc.rs
Normal file
|
@ -0,0 +1,364 @@
|
|||
use core::cell::Cell;
|
||||
use core::convert::TryInto;
|
||||
use core::sync::atomic::{compiler_fence, AtomicU32, Ordering};
|
||||
|
||||
use embassy::time::{Clock, TICKS_PER_SECOND};
|
||||
use stm32f4xx_hal::bb;
|
||||
use stm32f4xx_hal::rcc::Clocks;
|
||||
|
||||
use crate::interrupt;
|
||||
use crate::interrupt::{CriticalSection, Mutex, OwnedInterrupt};
|
||||
|
||||
// RTC timekeeping works with something we call "periods", which are time intervals
|
||||
// of 2^15 ticks. The RTC counter value is 16 bits, so one "overflow cycle" is 2 periods.
|
||||
//
|
||||
// A `period` count is maintained in parallel to the RTC hardware `counter`, like this:
|
||||
// - `period` and `counter` start at 0
|
||||
// - `period` is incremented on overflow (at counter value 0)
|
||||
// - `period` is incremented "midway" between overflows (at counter value 0x8000)
|
||||
//
|
||||
// Therefore, when `period` is even, counter is in 0..0x7FFF. When odd, counter is in 0x8000..0xFFFF
|
||||
// This allows for now() to return the correct value even if it races an overflow.
|
||||
//
|
||||
// To get `now()`, `period` is read first, then `counter` is read. If the counter value matches
|
||||
// the expected range for the `period` parity, we're done. If it doesn't, this means that
|
||||
// a new period start has raced us between reading `period` and `counter`, so we assume the `counter` value
|
||||
// corresponds to the next period.
|
||||
//
|
||||
// `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years.
|
||||
|
||||
fn calc_now(period: u32, counter: u16) -> u64 {
|
||||
((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64)
|
||||
}
|
||||
|
||||
struct AlarmState {
|
||||
timestamp: Cell<u64>,
|
||||
callback: Cell<Option<(fn(*mut ()), *mut ())>>,
|
||||
}
|
||||
|
||||
impl AlarmState {
|
||||
fn new() -> Self {
|
||||
Self {
|
||||
timestamp: Cell::new(u64::MAX),
|
||||
callback: Cell::new(None),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: This is sometimes wasteful, try to find a better way
|
||||
const ALARM_COUNT: usize = 3;
|
||||
|
||||
pub struct RTC<T: Instance> {
|
||||
rtc: T,
|
||||
irq: T::Interrupt,
|
||||
|
||||
/// Number of 2^23 periods elapsed since boot.
|
||||
period: AtomicU32,
|
||||
|
||||
/// Timestamp at which to fire alarm. u64::MAX if no alarm is scheduled.
|
||||
alarms: Mutex<[AlarmState; ALARM_COUNT]>,
|
||||
|
||||
clocks: Clocks,
|
||||
}
|
||||
|
||||
impl<T: Instance> RTC<T> {
|
||||
pub fn new(rtc: T, irq: T::Interrupt, clocks: Clocks) -> Self {
|
||||
Self {
|
||||
rtc,
|
||||
irq,
|
||||
period: AtomicU32::new(0),
|
||||
alarms: Mutex::new([AlarmState::new(), AlarmState::new(), AlarmState::new()]),
|
||||
clocks,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn start(&'static self) {
|
||||
self.rtc.enable_clock();
|
||||
self.rtc.stop_and_reset();
|
||||
|
||||
let multiplier = if T::ppre(&self.clocks) == 1 { 1 } else { 2 };
|
||||
let freq = T::pclk(&self.clocks) * multiplier;
|
||||
let psc = freq / TICKS_PER_SECOND as u32 - 1;
|
||||
let psc: u16 = psc.try_into().unwrap();
|
||||
|
||||
self.rtc.set_psc_arr(psc, u16::MAX);
|
||||
// Mid-way point
|
||||
self.rtc.set_compare(0, 0x8000);
|
||||
self.rtc.set_compare_interrupt(0, true);
|
||||
|
||||
self.irq.set_handler(
|
||||
|ptr| unsafe {
|
||||
let this = &*(ptr as *const () as *const Self);
|
||||
this.on_interrupt();
|
||||
},
|
||||
self as *const _ as *mut _,
|
||||
);
|
||||
self.irq.unpend();
|
||||
self.irq.enable();
|
||||
|
||||
self.rtc.start();
|
||||
}
|
||||
|
||||
fn on_interrupt(&self) {
|
||||
if self.rtc.overflow_interrupt_status() {
|
||||
self.rtc.overflow_clear_flag();
|
||||
self.next_period();
|
||||
}
|
||||
|
||||
// Half overflow
|
||||
if self.rtc.compare_interrupt_status(0) {
|
||||
self.rtc.compare_clear_flag(0);
|
||||
self.next_period();
|
||||
}
|
||||
|
||||
for n in 1..=ALARM_COUNT {
|
||||
if self.rtc.compare_interrupt_status(n) {
|
||||
self.rtc.compare_clear_flag(n);
|
||||
interrupt::free(|cs| self.trigger_alarm(n, cs));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn next_period(&self) {
|
||||
interrupt::free(|cs| {
|
||||
let period = self.period.fetch_add(1, Ordering::Relaxed) + 1;
|
||||
let t = (period as u64) << 15;
|
||||
|
||||
for n in 1..=ALARM_COUNT {
|
||||
let alarm = &self.alarms.borrow(cs)[n - 1];
|
||||
let at = alarm.timestamp.get();
|
||||
|
||||
let diff = at - t;
|
||||
if diff < 0xc000 {
|
||||
self.rtc.set_compare(n, at as u16);
|
||||
self.rtc.set_compare_interrupt(n, true);
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
fn trigger_alarm(&self, n: usize, cs: &CriticalSection) {
|
||||
self.rtc.set_compare_interrupt(n, false);
|
||||
|
||||
let alarm = &self.alarms.borrow(cs)[n - 1];
|
||||
alarm.timestamp.set(u64::MAX);
|
||||
|
||||
// Call after clearing alarm, so the callback can set another alarm.
|
||||
if let Some((f, ctx)) = alarm.callback.get() {
|
||||
f(ctx);
|
||||
}
|
||||
}
|
||||
|
||||
fn set_alarm_callback(&self, n: usize, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
interrupt::free(|cs| {
|
||||
let alarm = &self.alarms.borrow(cs)[n - 1];
|
||||
alarm.callback.set(Some((callback, ctx)));
|
||||
})
|
||||
}
|
||||
|
||||
fn set_alarm(&self, n: usize, timestamp: u64) {
|
||||
interrupt::free(|cs| {
|
||||
let alarm = &self.alarms.borrow(cs)[n - 1];
|
||||
alarm.timestamp.set(timestamp);
|
||||
|
||||
let t = self.now();
|
||||
if timestamp <= t {
|
||||
self.trigger_alarm(n, cs);
|
||||
return;
|
||||
}
|
||||
|
||||
let diff = timestamp - t;
|
||||
if diff < 0xc000 {
|
||||
let safe_timestamp = timestamp.max(t + 3);
|
||||
self.rtc.set_compare(n, safe_timestamp as u16);
|
||||
self.rtc.set_compare_interrupt(n, true);
|
||||
} else {
|
||||
self.rtc.set_compare_interrupt(n, false);
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
pub fn alarm1(&'static self) -> Alarm<T> {
|
||||
Alarm { n: 1, rtc: self }
|
||||
}
|
||||
pub fn alarm2(&'static self) -> Option<Alarm<T>> {
|
||||
if T::REAL_ALARM_COUNT >= 2 {
|
||||
Some(Alarm { n: 2, rtc: self })
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
pub fn alarm3(&'static self) -> Option<Alarm<T>> {
|
||||
if T::REAL_ALARM_COUNT >= 3 {
|
||||
Some(Alarm { n: 3, rtc: self })
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Instance> embassy::time::Clock for RTC<T> {
|
||||
fn now(&self) -> u64 {
|
||||
let period = self.period.load(Ordering::Relaxed);
|
||||
compiler_fence(Ordering::Acquire);
|
||||
let counter = self.rtc.counter();
|
||||
calc_now(period, counter)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Alarm<T: Instance> {
|
||||
n: usize,
|
||||
rtc: &'static RTC<T>,
|
||||
}
|
||||
|
||||
impl<T: Instance> embassy::time::Alarm for Alarm<T> {
|
||||
fn set_callback(&self, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
self.rtc.set_alarm_callback(self.n, callback, ctx);
|
||||
}
|
||||
|
||||
fn set(&self, timestamp: u64) {
|
||||
self.rtc.set_alarm(self.n, timestamp);
|
||||
}
|
||||
|
||||
fn clear(&self) {
|
||||
self.rtc.set_alarm(self.n, u64::MAX);
|
||||
}
|
||||
}
|
||||
|
||||
mod sealed {
|
||||
pub trait Sealed {}
|
||||
}
|
||||
|
||||
pub trait Instance: sealed::Sealed + Sized + 'static {
|
||||
type Interrupt: OwnedInterrupt;
|
||||
const REAL_ALARM_COUNT: usize;
|
||||
|
||||
fn enable_clock(&self);
|
||||
fn set_compare(&self, n: usize, value: u16);
|
||||
fn set_compare_interrupt(&self, n: usize, enable: bool);
|
||||
fn compare_interrupt_status(&self, n: usize) -> bool;
|
||||
fn compare_clear_flag(&self, n: usize);
|
||||
fn overflow_interrupt_status(&self) -> bool;
|
||||
fn overflow_clear_flag(&self);
|
||||
fn set_psc_arr(&self, psc: u16, arr: u16);
|
||||
fn stop_and_reset(&self);
|
||||
fn start(&self);
|
||||
fn counter(&self) -> u16;
|
||||
fn ppre(clocks: &Clocks) -> u8;
|
||||
fn pclk(clocks: &Clocks) -> u32;
|
||||
}
|
||||
|
||||
mod tim2 {
|
||||
use super::*;
|
||||
use stm32f4xx_hal::pac::{RCC, TIM2};
|
||||
|
||||
impl sealed::Sealed for TIM2 {}
|
||||
|
||||
impl Instance for TIM2 {
|
||||
type Interrupt = interrupt::TIM2Interrupt;
|
||||
const REAL_ALARM_COUNT: usize = 3;
|
||||
|
||||
fn enable_clock(&self) {
|
||||
// NOTE(unsafe) It will only be used for atomic operations
|
||||
unsafe {
|
||||
let rcc = &*RCC::ptr();
|
||||
|
||||
bb::set(&rcc.apb1enr, 0);
|
||||
bb::set(&rcc.apb1rstr, 0);
|
||||
bb::clear(&rcc.apb1rstr, 0);
|
||||
}
|
||||
}
|
||||
|
||||
fn set_compare(&self, n: usize, value: u16) {
|
||||
// NOTE(unsafe) these registers accept all the range of u16 values
|
||||
match n {
|
||||
0 => self.ccr1.write(|w| unsafe { w.bits(value.into()) }),
|
||||
1 => self.ccr2.write(|w| unsafe { w.bits(value.into()) }),
|
||||
2 => self.ccr3.write(|w| unsafe { w.bits(value.into()) }),
|
||||
3 => self.ccr4.write(|w| unsafe { w.bits(value.into()) }),
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
|
||||
fn set_compare_interrupt(&self, n: usize, enable: bool) {
|
||||
if n > 3 {
|
||||
return;
|
||||
}
|
||||
let bit = n as u8 + 1;
|
||||
unsafe {
|
||||
if enable {
|
||||
bb::set(&self.dier, bit);
|
||||
} else {
|
||||
bb::clear(&self.dier, bit);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn compare_interrupt_status(&self, n: usize) -> bool {
|
||||
let status = self.sr.read();
|
||||
match n {
|
||||
0 => status.cc1if().bit_is_set(),
|
||||
1 => status.cc2if().bit_is_set(),
|
||||
2 => status.cc3if().bit_is_set(),
|
||||
3 => status.cc4if().bit_is_set(),
|
||||
_ => false,
|
||||
}
|
||||
}
|
||||
|
||||
fn compare_clear_flag(&self, n: usize) {
|
||||
if n > 3 {
|
||||
return;
|
||||
}
|
||||
let bit = n as u8 + 1;
|
||||
unsafe {
|
||||
bb::clear(&self.sr, bit);
|
||||
}
|
||||
}
|
||||
|
||||
fn overflow_interrupt_status(&self) -> bool {
|
||||
self.sr.read().uif().bit_is_set()
|
||||
}
|
||||
|
||||
fn overflow_clear_flag(&self) {
|
||||
unsafe {
|
||||
bb::clear(&self.sr, 0);
|
||||
}
|
||||
}
|
||||
|
||||
fn set_psc_arr(&self, psc: u16, arr: u16) {
|
||||
// NOTE(unsafe) All u16 values are valid
|
||||
self.psc.write(|w| unsafe { w.bits(psc.into()) });
|
||||
self.arr.write(|w| unsafe { w.bits(arr.into()) });
|
||||
|
||||
unsafe {
|
||||
// Set URS, generate update, clear URS
|
||||
bb::set(&self.cr1, 2);
|
||||
self.egr.write(|w| w.ug().set_bit());
|
||||
bb::clear(&self.cr1, 2);
|
||||
}
|
||||
}
|
||||
|
||||
fn stop_and_reset(&self) {
|
||||
unsafe {
|
||||
bb::clear(&self.cr1, 0);
|
||||
}
|
||||
self.cnt.reset();
|
||||
}
|
||||
|
||||
fn start(&self) {
|
||||
unsafe { bb::set(&self.cr1, 0) }
|
||||
}
|
||||
|
||||
fn counter(&self) -> u16 {
|
||||
self.cnt.read().bits() as u16
|
||||
}
|
||||
|
||||
fn ppre(clocks: &Clocks) -> u8 {
|
||||
clocks.ppre1()
|
||||
}
|
||||
|
||||
fn pclk(clocks: &Clocks) -> u32 {
|
||||
clocks.pclk1().0
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue