embassy-usb: Add MIDI class

This commit is contained in:
kalkyl 2023-10-14 04:20:59 +02:00
parent 01eb1a7339
commit a57d383b1d
3 changed files with 338 additions and 0 deletions

View file

@ -0,0 +1,227 @@
//! MIDI class implementation.
use crate::driver::{Driver, Endpoint, EndpointError, EndpointIn, EndpointOut};
use crate::Builder;
/// This should be used as `device_class` when building the `UsbDevice`.
pub const USB_AUDIO_CLASS: u8 = 0x01;
const USB_AUDIOCONTROL_SUBCLASS: u8 = 0x01;
const USB_MIDISTREAMING_SUBCLASS: u8 = 0x03;
const MIDI_IN_JACK_SUBTYPE: u8 = 0x02;
const MIDI_OUT_JACK_SUBTYPE: u8 = 0x03;
const EMBEDDED: u8 = 0x01;
const EXTERNAL: u8 = 0x02;
const CS_INTERFACE: u8 = 0x24;
const CS_ENDPOINT: u8 = 0x25;
const HEADER_SUBTYPE: u8 = 0x01;
const MS_HEADER_SUBTYPE: u8 = 0x01;
const MS_GENERAL: u8 = 0x01;
const PROTOCOL_NONE: u8 = 0x00;
const MIDI_IN_SIZE: u8 = 0x06;
const MIDI_OUT_SIZE: u8 = 0x09;
/// Packet level implementation of a USB MIDI device.
///
/// This class can be used directly and it has the least overhead due to directly reading and
/// writing USB packets with no intermediate buffers, but it will not act like a stream-like port.
/// The following constraints must be followed if you use this class directly:
///
/// - `read_packet` must be called with a buffer large enough to hold max_packet_size bytes.
/// - `write_packet` must not be called with a buffer larger than max_packet_size bytes.
/// - If you write a packet that is exactly max_packet_size bytes long, it won't be processed by the
/// host operating system until a subsequent shorter packet is sent. A zero-length packet (ZLP)
/// can be sent if there is no other data to send. This is because USB bulk transactions must be
/// terminated with a short packet, even if the bulk endpoint is used for stream-like data.
pub struct MidiClass<'d, D: Driver<'d>> {
read_ep: D::EndpointOut,
write_ep: D::EndpointIn,
}
impl<'d, D: Driver<'d>> MidiClass<'d, D> {
/// Creates a new MidiClass with the provided UsbBus, number of input and output jacks and max_packet_size in bytes.
/// For full-speed devices, max_packet_size has to be one of 8, 16, 32 or 64.
pub fn new(builder: &mut Builder<'d, D>, n_in_jacks: u8, n_out_jacks: u8, max_packet_size: u16) -> Self {
let mut func = builder.function(USB_AUDIO_CLASS, USB_AUDIOCONTROL_SUBCLASS, PROTOCOL_NONE);
// Audio control interface
let mut iface = func.interface();
let audio_if = iface.interface_number();
let midi_if = u8::from(audio_if) + 1;
let mut alt = iface.alt_setting(USB_AUDIO_CLASS, USB_AUDIOCONTROL_SUBCLASS, PROTOCOL_NONE, None);
alt.descriptor(CS_INTERFACE, &[HEADER_SUBTYPE, 0x00, 0x01, 0x09, 0x00, 0x01, midi_if]);
// MIDIStreaming interface
let mut iface = func.interface();
let _midi_if = iface.interface_number();
let mut alt = iface.alt_setting(USB_AUDIO_CLASS, USB_MIDISTREAMING_SUBCLASS, PROTOCOL_NONE, None);
let midi_streaming_total_length = 7
+ (n_in_jacks + n_out_jacks) as usize * (MIDI_IN_SIZE + MIDI_OUT_SIZE) as usize
+ 7
+ (4 + n_out_jacks as usize)
+ 7
+ (4 + n_in_jacks as usize);
alt.descriptor(
CS_INTERFACE,
&[
MS_HEADER_SUBTYPE,
0x00,
0x01,
(midi_streaming_total_length & 0xFF) as u8,
((midi_streaming_total_length >> 8) & 0xFF) as u8,
],
);
// Calculates the index'th external midi in jack id
let in_jack_id_ext = |index| 2 * index + 1;
// Calculates the index'th embedded midi out jack id
let out_jack_id_emb = |index| 2 * index + 2;
// Calculates the index'th external midi out jack id
let out_jack_id_ext = |index| 2 * n_in_jacks + 2 * index + 1;
// Calculates the index'th embedded midi in jack id
let in_jack_id_emb = |index| 2 * n_in_jacks + 2 * index + 2;
for i in 0..n_in_jacks {
alt.descriptor(CS_INTERFACE, &[MIDI_IN_JACK_SUBTYPE, EXTERNAL, in_jack_id_ext(i), 0x00]);
}
for i in 0..n_out_jacks {
alt.descriptor(CS_INTERFACE, &[MIDI_IN_JACK_SUBTYPE, EMBEDDED, in_jack_id_emb(i), 0x00]);
}
for i in 0..n_out_jacks {
alt.descriptor(
CS_INTERFACE,
&[
MIDI_OUT_JACK_SUBTYPE,
EXTERNAL,
out_jack_id_ext(i),
0x01,
in_jack_id_emb(i),
0x01,
0x00,
],
);
}
for i in 0..n_in_jacks {
alt.descriptor(
CS_INTERFACE,
&[
MIDI_OUT_JACK_SUBTYPE,
EMBEDDED,
out_jack_id_emb(i),
0x01,
in_jack_id_ext(i),
0x01,
0x00,
],
);
}
let mut endpoint_data = [
MS_GENERAL, 0, // Number of jacks
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // Jack mappings
];
endpoint_data[1] = n_out_jacks;
for i in 0..n_out_jacks {
endpoint_data[2 + i as usize] = in_jack_id_emb(i);
}
let read_ep = alt.endpoint_bulk_out(max_packet_size);
alt.descriptor(CS_ENDPOINT, &endpoint_data[0..2 + n_out_jacks as usize]);
endpoint_data[1] = n_in_jacks;
for i in 0..n_in_jacks {
endpoint_data[2 + i as usize] = out_jack_id_emb(i);
}
let write_ep = alt.endpoint_bulk_in(max_packet_size);
alt.descriptor(CS_ENDPOINT, &endpoint_data[0..2 + n_in_jacks as usize]);
MidiClass { read_ep, write_ep }
}
/// Gets the maximum packet size in bytes.
pub fn max_packet_size(&self) -> u16 {
// The size is the same for both endpoints.
self.read_ep.info().max_packet_size
}
/// Writes a single packet into the IN endpoint.
pub async fn write_packet(&mut self, data: &[u8]) -> Result<(), EndpointError> {
self.write_ep.write(data).await
}
/// Reads a single packet from the OUT endpoint.
pub async fn read_packet(&mut self, data: &mut [u8]) -> Result<usize, EndpointError> {
self.read_ep.read(data).await
}
/// Waits for the USB host to enable this interface
pub async fn wait_connection(&mut self) {
self.read_ep.wait_enabled().await
}
/// Split the class into a sender and receiver.
///
/// This allows concurrently sending and receiving packets from separate tasks.
pub fn split(self) -> (Sender<'d, D>, Receiver<'d, D>) {
(
Sender {
write_ep: self.write_ep,
},
Receiver { read_ep: self.read_ep },
)
}
}
/// Midi class packet sender.
///
/// You can obtain a `Sender` with [`MidiClass::split`]
pub struct Sender<'d, D: Driver<'d>> {
write_ep: D::EndpointIn,
}
impl<'d, D: Driver<'d>> Sender<'d, D> {
/// Gets the maximum packet size in bytes.
pub fn max_packet_size(&self) -> u16 {
// The size is the same for both endpoints.
self.write_ep.info().max_packet_size
}
/// Writes a single packet.
pub async fn write_packet(&mut self, data: &[u8]) -> Result<(), EndpointError> {
self.write_ep.write(data).await
}
/// Waits for the USB host to enable this interface
pub async fn wait_connection(&mut self) {
self.write_ep.wait_enabled().await
}
}
/// Midi class packet receiver.
///
/// You can obtain a `Receiver` with [`MidiClass::split`]
pub struct Receiver<'d, D: Driver<'d>> {
read_ep: D::EndpointOut,
}
impl<'d, D: Driver<'d>> Receiver<'d, D> {
/// Gets the maximum packet size in bytes.
pub fn max_packet_size(&self) -> u16 {
// The size is the same for both endpoints.
self.read_ep.info().max_packet_size
}
/// Reads a single packet.
pub async fn read_packet(&mut self, data: &mut [u8]) -> Result<usize, EndpointError> {
self.read_ep.read(data).await
}
/// Waits for the USB host to enable this interface
pub async fn wait_connection(&mut self) {
self.read_ep.wait_enabled().await
}
}

View file

@ -2,3 +2,4 @@
pub mod cdc_acm;
pub mod cdc_ncm;
pub mod hid;
pub mod midi;

View file

@ -0,0 +1,110 @@
//! This example shows how to use USB (Universal Serial Bus) in the RP2040 chip.
//!
//! This creates a USB MIDI device that echoes MIDI messages back to the host.
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::{info, panic};
use embassy_executor::Spawner;
use embassy_futures::join::join;
use embassy_rp::bind_interrupts;
use embassy_rp::peripherals::USB;
use embassy_rp::usb::{Driver, Instance, InterruptHandler};
use embassy_usb::class::midi::MidiClass;
use embassy_usb::driver::EndpointError;
use embassy_usb::{Builder, Config};
use {defmt_rtt as _, panic_probe as _};
bind_interrupts!(struct Irqs {
USBCTRL_IRQ => InterruptHandler<USB>;
});
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
info!("Hello world!");
let p = embassy_rp::init(Default::default());
// Create the driver, from the HAL.
let driver = Driver::new(p.USB, Irqs);
// Create embassy-usb Config
let mut config = Config::new(0xc0de, 0xcafe);
config.manufacturer = Some("Embassy");
config.product = Some("USB-MIDI example");
config.serial_number = Some("12345678");
config.max_power = 100;
config.max_packet_size_0 = 64;
// Required for windows compatibility.
// https://developer.nordicsemi.com/nRF_Connect_SDK/doc/1.9.1/kconfig/CONFIG_CDC_ACM_IAD.html#help
config.device_class = 0xEF;
config.device_sub_class = 0x02;
config.device_protocol = 0x01;
config.composite_with_iads = true;
// Create embassy-usb DeviceBuilder using the driver and config.
// It needs some buffers for building the descriptors.
let mut device_descriptor = [0; 256];
let mut config_descriptor = [0; 256];
let mut bos_descriptor = [0; 256];
let mut control_buf = [0; 64];
let mut builder = Builder::new(
driver,
config,
&mut device_descriptor,
&mut config_descriptor,
&mut bos_descriptor,
&mut control_buf,
);
// Create classes on the builder.
let mut class = MidiClass::new(&mut builder, 1, 1, 64);
// The `MidiClass` can be split into `Sender` and `Receiver`, to be used in separate tasks.
// let (sender, receiver) = class.split();
// Build the builder.
let mut usb = builder.build();
// Run the USB device.
let usb_fut = usb.run();
// Use the Midi class!
let midi_fut = async {
loop {
class.wait_connection().await;
info!("Connected");
let _ = midi_echo(&mut class).await;
info!("Disconnected");
}
};
// Run everything concurrently.
// If we had made everything `'static` above instead, we could do this using separate tasks instead.
join(usb_fut, midi_fut).await;
}
struct Disconnected {}
impl From<EndpointError> for Disconnected {
fn from(val: EndpointError) -> Self {
match val {
EndpointError::BufferOverflow => panic!("Buffer overflow"),
EndpointError::Disabled => Disconnected {},
}
}
}
async fn midi_echo<'d, T: Instance + 'd>(class: &mut MidiClass<'d, Driver<'d, T>>) -> Result<(), Disconnected> {
let mut buf = [0; 64];
loop {
let n = class.read_packet(&mut buf).await?;
let data = &buf[..n];
info!("data: {:x}", data);
class.write_packet(data).await?;
}
}