Initial add for sx126x

This commit is contained in:
ceekdee 2022-09-27 21:55:41 -05:00
parent 9bb43ffe9a
commit a89a0c2f12
11 changed files with 2582 additions and 2 deletions

View file

@ -31,7 +31,7 @@ The <a href="https://docs.embassy.dev/embassy-net/">embassy-net</a> network stac
The <a href="https://github.com/embassy-rs/nrf-softdevice">nrf-softdevice</a> crate provides Bluetooth Low Energy 4.x and 5.x support for nRF52 microcontrollers.
- **LoRa** -
<a href="https://docs.embassy.dev/embassy-lora/">embassy-lora</a> supports LoRa networking on STM32WL wireless microcontrollers and Semtech SX127x transceivers.
<a href="https://docs.embassy.dev/embassy-lora/">embassy-lora</a> supports LoRa networking on STM32WL wireless microcontrollers and Semtech SX126x and SX127x transceivers.
- **USB** -
<a href="https://docs.embassy.dev/embassy-usb/">embassy-usb</a> implements a device-side USB stack. Implementations for common classes such as USB serial (CDC ACM) and USB HID are available, and a rich builder API allows building your own.

View file

@ -8,6 +8,7 @@ src_base = "https://github.com/embassy-rs/embassy/blob/embassy-lora-v$VERSION/em
src_base_git = "https://github.com/embassy-rs/embassy/blob/$COMMIT/embassy-lora/src/"
features = ["time", "defmt"]
flavors = [
{ name = "rak4631", target = "thumbv7em-none-eabihf", features = ["rak4631"] },
{ name = "sx127x", target = "thumbv7em-none-eabihf", features = ["sx127x", "embassy-stm32/stm32wl55jc-cm4", "embassy-stm32/time-driver-any"] },
{ name = "stm32wl", target = "thumbv7em-none-eabihf", features = ["stm32wl", "embassy-stm32/stm32wl55jc-cm4", "embassy-stm32/time-driver-any"] },
]
@ -15,6 +16,7 @@ flavors = [
[lib]
[features]
rak4631 = []
sx127x = []
stm32wl = ["embassy-stm32", "embassy-stm32/subghz"]
time = []

View file

@ -7,6 +7,8 @@ pub(crate) mod fmt;
#[cfg(feature = "stm32wl")]
pub mod stm32wl;
#[cfg(feature = "rak4631")]
pub mod sx126x;
#[cfg(feature = "sx127x")]
pub mod sx127x;

View file

@ -0,0 +1,171 @@
use core::future::Future;
use defmt::Format;
use embedded_hal::digital::v2::OutputPin;
use embedded_hal_async::digital::Wait;
use embedded_hal_async::spi::*;
use lorawan_device::async_device::radio::{PhyRxTx, RfConfig, RxQuality, TxConfig};
use lorawan_device::async_device::Timings;
mod sx126x_lora;
use sx126x_lora::LoRa;
use self::sx126x_lora::mod_params::RadioError;
/// Semtech Sx126x LoRa peripheral
pub struct Sx126xRadio<SPI, CS, RESET, ANTRX, ANTTX, WAIT, BUS>
where
SPI: SpiBus<u8, Error = BUS> + 'static,
CS: OutputPin + 'static,
RESET: OutputPin + 'static,
ANTRX: OutputPin + 'static,
ANTTX: OutputPin + 'static,
WAIT: Wait + 'static,
BUS: Error + Format + 'static,
{
pub lora: LoRa<SPI, CS, RESET, ANTRX, ANTTX, WAIT>,
}
impl<SPI, CS, RESET, ANTRX, ANTTX, WAIT, BUS> Sx126xRadio<SPI, CS, RESET, ANTRX, ANTTX, WAIT, BUS>
where
SPI: SpiBus<u8, Error = BUS> + 'static,
CS: OutputPin + 'static,
RESET: OutputPin + 'static,
ANTRX: OutputPin + 'static,
ANTTX: OutputPin + 'static,
WAIT: Wait + 'static,
BUS: Error + Format + 'static,
{
pub async fn new(
spi: SPI,
cs: CS,
reset: RESET,
antenna_rx: ANTRX,
antenna_tx: ANTTX,
dio1: WAIT,
busy: WAIT,
enable_public_network: bool,
) -> Result<Self, RadioError<BUS>> {
let mut lora = LoRa::new(spi, cs, reset, antenna_rx, antenna_tx, dio1, busy);
lora.init().await?;
lora.set_lora_modem(enable_public_network).await?;
Ok(Self { lora })
}
}
impl<SPI, CS, RESET, ANTRX, ANTTX, WAIT, BUS> Timings for Sx126xRadio<SPI, CS, RESET, ANTRX, ANTTX, WAIT, BUS>
where
SPI: SpiBus<u8, Error = BUS> + 'static,
CS: OutputPin + 'static,
RESET: OutputPin + 'static,
ANTRX: OutputPin + 'static,
ANTTX: OutputPin + 'static,
WAIT: Wait + 'static,
BUS: Error + Format + 'static,
{
fn get_rx_window_offset_ms(&self) -> i32 {
-500
}
fn get_rx_window_duration_ms(&self) -> u32 {
800
}
}
impl<SPI, CS, RESET, ANTRX, ANTTX, WAIT, BUS> PhyRxTx for Sx126xRadio<SPI, CS, RESET, ANTRX, ANTTX, WAIT, BUS>
where
SPI: SpiBus<u8, Error = BUS> + 'static,
CS: OutputPin + 'static,
RESET: OutputPin + 'static,
ANTRX: OutputPin + 'static,
ANTTX: OutputPin + 'static,
WAIT: Wait + 'static,
BUS: Error + Format + 'static,
{
type PhyError = RadioError<BUS>;
type TxFuture<'m> = impl Future<Output = Result<u32, Self::PhyError>> + 'm
where
SPI: 'm,
CS: 'm,
RESET: 'm,
ANTRX: 'm,
ANTTX: 'm,
WAIT: 'm,
BUS: 'm;
fn tx<'m>(&'m mut self, config: TxConfig, buffer: &'m [u8]) -> Self::TxFuture<'m> {
trace!("TX START");
async move {
self.lora
.set_tx_config(
config.pw,
config.rf.spreading_factor.into(),
config.rf.bandwidth.into(),
config.rf.coding_rate.into(),
4,
false,
true,
false,
0,
false,
)
.await?;
self.lora.set_max_payload_length(buffer.len() as u8).await?;
self.lora.set_channel(config.rf.frequency).await?;
self.lora.send(buffer, 0xffffff).await?;
self.lora.process_irq(None, None, None).await?;
trace!("TX DONE");
return Ok(0);
}
}
type RxFuture<'m> = impl Future<Output = Result<(usize, RxQuality), Self::PhyError>> + 'm
where
SPI: 'm,
CS: 'm,
RESET: 'm,
ANTRX: 'm,
ANTTX: 'm,
WAIT: 'm,
BUS: 'm;
fn rx<'m>(&'m mut self, config: RfConfig, receiving_buffer: &'m mut [u8]) -> Self::RxFuture<'m> {
trace!("RX START");
async move {
self.lora
.set_rx_config(
config.spreading_factor.into(),
config.bandwidth.into(),
config.coding_rate.into(),
4,
4,
false,
0u8,
true,
false,
0,
false,
true,
)
.await?;
self.lora.set_max_payload_length(receiving_buffer.len() as u8).await?;
self.lora.set_channel(config.frequency).await?;
self.lora.rx(90 * 1000).await?;
let mut received_len = 0u8;
self.lora
.process_irq(Some(receiving_buffer), Some(&mut received_len), None)
.await?;
trace!("RX DONE");
let packet_status = self.lora.get_latest_packet_status();
let mut rssi = 0i16;
let mut snr = 0i8;
if packet_status.is_some() {
rssi = packet_status.unwrap().rssi as i16;
snr = packet_status.unwrap().snr;
}
Ok((received_len as usize, RxQuality::new(rssi, snr)))
}
}
}

View file

@ -0,0 +1,251 @@
use embassy_time::{Duration, Timer};
use embedded_hal::digital::v2::OutputPin;
use embedded_hal_async::digital::Wait;
use embedded_hal_async::spi::SpiBus;
use super::mod_params::RadioError::*;
use super::mod_params::*;
use super::LoRa;
// Defines the time required for the TCXO to wakeup [ms].
const BRD_TCXO_WAKEUP_TIME: u32 = 10;
// Provides board-specific functionality for Semtech SX126x-based boards. Use #[cfg(feature = "board_type")] to specify unique board functionality.
// The base implementation supports the RAK4631 board.
impl<SPI, CS, RESET, ANTRX, ANTTX, WAIT, BUS> LoRa<SPI, CS, RESET, ANTRX, ANTTX, WAIT>
where
SPI: SpiBus<u8, Error = BUS>,
CS: OutputPin,
RESET: OutputPin,
ANTRX: OutputPin,
ANTTX: OutputPin,
WAIT: Wait,
{
// De-initialize the radio I/Os pins interface. Useful when going into MCU low power modes.
pub(super) async fn brd_io_deinit(&mut self) -> Result<(), RadioError<BUS>> {
Ok(()) // no operation currently
}
// Initialize the TCXO power pin
pub(super) async fn brd_io_tcxo_init(&mut self) -> Result<(), RadioError<BUS>> {
let timeout = self.brd_get_board_tcxo_wakeup_time() << 6;
self.sub_set_dio3_as_tcxo_ctrl(TcxoCtrlVoltage::Ctrl1V7, timeout)
.await?;
Ok(())
}
// Initialize RF switch control pins
pub(super) async fn brd_io_rf_switch_init(&mut self) -> Result<(), RadioError<BUS>> {
self.sub_set_dio2_as_rf_switch_ctrl(true).await?;
Ok(())
}
// Initialize the radio debug pins
pub(super) async fn brd_io_dbg_init(&mut self) -> Result<(), RadioError<BUS>> {
Ok(()) // no operation currently
}
// Hardware reset of the radio
pub(super) async fn brd_reset(&mut self) -> Result<(), RadioError<BUS>> {
Timer::after(Duration::from_millis(10)).await;
self.reset.set_low().map_err(|_| Reset)?;
Timer::after(Duration::from_millis(20)).await;
self.reset.set_high().map_err(|_| Reset)?;
Timer::after(Duration::from_millis(10)).await;
Ok(())
}
// Wait while the busy pin is high
pub(super) async fn brd_wait_on_busy(&mut self) -> Result<(), RadioError<BUS>> {
self.busy.wait_for_low().await.map_err(|_| Busy)?;
Ok(())
}
// Wake up the radio
pub(super) async fn brd_wakeup(&mut self) -> Result<(), RadioError<BUS>> {
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[OpCode::GetStatus.value()]).await.map_err(SPI)?;
self.spi.write(&[0x00]).await.map_err(SPI)?;
self.cs.set_high().map_err(|_| CS)?;
self.brd_wait_on_busy().await?;
self.brd_set_operating_mode(RadioMode::StandbyRC);
Ok(())
}
// Send a command that writes data to the radio
pub(super) async fn brd_write_command(&mut self, op_code: OpCode, buffer: &[u8]) -> Result<(), RadioError<BUS>> {
self.sub_check_device_ready().await?;
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[op_code.value()]).await.map_err(SPI)?;
self.spi.write(buffer).await.map_err(SPI)?;
self.cs.set_high().map_err(|_| CS)?;
if op_code != OpCode::SetSleep {
self.brd_wait_on_busy().await?;
}
Ok(())
}
// Send a command that reads data from the radio, filling the provided buffer and returning a status
pub(super) async fn brd_read_command(&mut self, op_code: OpCode, buffer: &mut [u8]) -> Result<u8, RadioError<BUS>> {
let mut status = [0u8];
let mut input = [0u8];
self.sub_check_device_ready().await?;
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[op_code.value()]).await.map_err(SPI)?;
self.spi.transfer(&mut status, &[0x00]).await.map_err(SPI)?;
for i in 0..buffer.len() {
self.spi.transfer(&mut input, &[0x00]).await.map_err(SPI)?;
buffer[i] = input[0];
}
self.cs.set_high().map_err(|_| CS)?;
self.brd_wait_on_busy().await?;
Ok(status[0])
}
// Write one or more bytes of data to the radio memory
pub(super) async fn brd_write_registers(
&mut self,
start_register: Register,
buffer: &[u8],
) -> Result<(), RadioError<BUS>> {
self.sub_check_device_ready().await?;
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[OpCode::WriteRegister.value()]).await.map_err(SPI)?;
self.spi
.write(&[
((start_register.addr() & 0xFF00) >> 8) as u8,
(start_register.addr() & 0x00FF) as u8,
])
.await
.map_err(SPI)?;
self.spi.write(buffer).await.map_err(SPI)?;
self.cs.set_high().map_err(|_| CS)?;
self.brd_wait_on_busy().await?;
Ok(())
}
// Read one or more bytes of data from the radio memory
pub(super) async fn brd_read_registers(
&mut self,
start_register: Register,
buffer: &mut [u8],
) -> Result<(), RadioError<BUS>> {
let mut input = [0u8];
self.sub_check_device_ready().await?;
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[OpCode::ReadRegister.value()]).await.map_err(SPI)?;
self.spi
.write(&[
((start_register.addr() & 0xFF00) >> 8) as u8,
(start_register.addr() & 0x00FF) as u8,
0x00u8,
])
.await
.map_err(SPI)?;
for i in 0..buffer.len() {
self.spi.transfer(&mut input, &[0x00]).await.map_err(SPI)?;
buffer[i] = input[0];
}
self.cs.set_high().map_err(|_| CS)?;
self.brd_wait_on_busy().await?;
Ok(())
}
// Write data to the buffer holding the payload in the radio
pub(super) async fn brd_write_buffer(&mut self, offset: u8, buffer: &[u8]) -> Result<(), RadioError<BUS>> {
self.sub_check_device_ready().await?;
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[OpCode::WriteBuffer.value()]).await.map_err(SPI)?;
self.spi.write(&[offset]).await.map_err(SPI)?;
self.spi.write(buffer).await.map_err(SPI)?;
self.cs.set_high().map_err(|_| CS)?;
self.brd_wait_on_busy().await?;
Ok(())
}
// Read data from the buffer holding the payload in the radio
pub(super) async fn brd_read_buffer(&mut self, offset: u8, buffer: &mut [u8]) -> Result<(), RadioError<BUS>> {
let mut input = [0u8];
self.sub_check_device_ready().await?;
self.cs.set_low().map_err(|_| CS)?;
self.spi.write(&[OpCode::ReadBuffer.value()]).await.map_err(SPI)?;
self.spi.write(&[offset]).await.map_err(SPI)?;
self.spi.write(&[0x00]).await.map_err(SPI)?;
for i in 0..buffer.len() {
self.spi.transfer(&mut input, &[0x00]).await.map_err(SPI)?;
buffer[i] = input[0];
}
self.cs.set_high().map_err(|_| CS)?;
self.brd_wait_on_busy().await?;
Ok(())
}
// Set the radio output power
pub(super) async fn brd_set_rf_tx_power(&mut self, power: i8) -> Result<(), RadioError<BUS>> {
self.sub_set_tx_params(power, RampTime::Ramp40Us).await?;
Ok(())
}
// Get the radio type
pub(super) fn brd_get_radio_type(&mut self) -> RadioType {
#[cfg(feature = "rak4631")]
RadioType::SX1262
}
// Initialize the RF switch I/O pins interface
pub(super) async fn brd_ant_sw_on(&mut self) -> Result<(), RadioError<BUS>> {
Ok(()) // no operation currently
}
// De-initialize the RF switch I/O pins interface for MCU low power modes
pub(super) async fn brd_ant_sw_off(&mut self) -> Result<(), RadioError<BUS>> {
Ok(()) // no operation currently
}
// Check if the given RF frequency is supported by the hardware
pub(super) async fn brd_check_rf_frequency(&mut self, _frequency: u32) -> Result<bool, RadioError<BUS>> {
#[cfg(feature = "rak4631")]
Ok(true) // all frequencies currently supported for the SX1262 within a rak4631
}
// Get the duration required for the TCXO to wakeup [ms].
pub(super) fn brd_get_board_tcxo_wakeup_time(&mut self) -> u32 {
BRD_TCXO_WAKEUP_TIME
}
/* Get current state of the DIO1 pin - not currently needed if waiting on DIO1 instead of using an IRQ process
pub(super) async fn brd_get_dio1_pin_state(
&mut self,
) -> Result<u32, RadioError<BUS>> {
Ok(0)
}
*/
// Get the current radio operatiing mode
pub(super) fn brd_get_operating_mode(&mut self) -> RadioMode {
self.operating_mode
}
// Set/Update the current radio operating mode This function is only required to reflect the current radio operating mode when processing interrupts.
pub(super) fn brd_set_operating_mode(&mut self, mode: RadioMode) {
self.operating_mode = mode;
}
}

View file

@ -0,0 +1,735 @@
#![allow(dead_code)]
use embassy_time::{Duration, Timer};
use embedded_hal::digital::v2::OutputPin;
use embedded_hal_async::digital::Wait;
use embedded_hal_async::spi::SpiBus;
mod board_specific;
pub mod mod_params;
mod subroutine;
use mod_params::RadioError::*;
use mod_params::*;
// Syncwords for public and private networks
const LORA_MAC_PUBLIC_SYNCWORD: u16 = 0x3444;
const LORA_MAC_PRIVATE_SYNCWORD: u16 = 0x1424;
// Maximum number of registers that can be added to the retention list
const MAX_NUMBER_REGS_IN_RETENTION: u8 = 4;
// Possible LoRa bandwidths
const LORA_BANDWIDTHS: [Bandwidth; 3] = [Bandwidth::_125KHz, Bandwidth::_250KHz, Bandwidth::_500KHz];
// Radio complete wakeup time with margin for temperature compensation [ms]
const RADIO_WAKEUP_TIME: u32 = 3;
/// Provides high-level access to Semtech SX126x-based boards
pub struct LoRa<SPI, CS, RESET, ANTRX, ANTTX, WAIT> {
spi: SPI,
cs: CS,
reset: RESET,
antenna_rx: ANTRX,
antenna_tx: ANTTX,
dio1: WAIT,
busy: WAIT,
operating_mode: RadioMode,
rx_continuous: bool,
max_payload_length: u8,
modulation_params: Option<ModulationParams>,
packet_type: PacketType,
packet_params: Option<PacketParams>,
packet_status: Option<PacketStatus>,
image_calibrated: bool,
frequency_error: u32,
}
impl<SPI, CS, RESET, ANTRX, ANTTX, WAIT, BUS> LoRa<SPI, CS, RESET, ANTRX, ANTTX, WAIT>
where
SPI: SpiBus<u8, Error = BUS>,
CS: OutputPin,
RESET: OutputPin,
ANTRX: OutputPin,
ANTTX: OutputPin,
WAIT: Wait,
{
/// Builds and returns a new instance of the radio. Only one instance of the radio should exist at a time ()
pub fn new(spi: SPI, cs: CS, reset: RESET, antenna_rx: ANTRX, antenna_tx: ANTTX, dio1: WAIT, busy: WAIT) -> Self {
Self {
spi,
cs,
reset,
antenna_rx,
antenna_tx,
dio1,
busy,
operating_mode: RadioMode::Sleep,
rx_continuous: false,
max_payload_length: 0xFFu8,
modulation_params: None,
packet_type: PacketType::LoRa,
packet_params: None,
packet_status: None,
image_calibrated: false,
frequency_error: 0u32, // where is volatile FrequencyError modified ???
}
}
/// Initialize the radio
pub async fn init(&mut self) -> Result<(), RadioError<BUS>> {
self.sub_init().await?;
self.sub_set_standby(StandbyMode::RC).await?;
self.sub_set_regulator_mode(RegulatorMode::UseDCDC).await?;
self.sub_set_buffer_base_address(0x00u8, 0x00u8).await?;
self.sub_set_tx_params(0i8, RampTime::Ramp200Us).await?;
self.sub_set_dio_irq_params(
IrqMask::All.value(),
IrqMask::All.value(),
IrqMask::None.value(),
IrqMask::None.value(),
)
.await?;
self.add_register_to_retention_list(Register::RxGain.addr()).await?;
self.add_register_to_retention_list(Register::TxModulation.addr())
.await?;
Ok(())
}
/// Return current radio state
pub fn get_status(&mut self) -> RadioState {
match self.brd_get_operating_mode() {
RadioMode::Transmit => RadioState::TxRunning,
RadioMode::Receive => RadioState::RxRunning,
RadioMode::ChannelActivityDetection => RadioState::ChannelActivityDetecting,
_ => RadioState::Idle,
}
}
/// Configure the radio for LoRa (FSK support should be provided in a separate driver, if desired)
pub async fn set_lora_modem(&mut self, enable_public_network: bool) -> Result<(), RadioError<BUS>> {
self.sub_set_packet_type(PacketType::LoRa).await?;
if enable_public_network {
self.brd_write_registers(
Register::LoRaSyncword,
&[
((LORA_MAC_PUBLIC_SYNCWORD >> 8) & 0xFF) as u8,
(LORA_MAC_PUBLIC_SYNCWORD & 0xFF) as u8,
],
)
.await?;
} else {
self.brd_write_registers(
Register::LoRaSyncword,
&[
((LORA_MAC_PRIVATE_SYNCWORD >> 8) & 0xFF) as u8,
(LORA_MAC_PRIVATE_SYNCWORD & 0xFF) as u8,
],
)
.await?;
}
Ok(())
}
/// Sets the channel frequency
pub async fn set_channel(&mut self, frequency: u32) -> Result<(), RadioError<BUS>> {
self.sub_set_rf_frequency(frequency).await?;
Ok(())
}
/* Checks if the channel is free for the given time. This is currently not implemented until a substitute
for switching to the FSK modem is found.
pub async fn is_channel_free(&mut self, frequency: u32, rxBandwidth: u32, rssiThresh: i16, maxCarrierSenseTime: u32) -> bool;
*/
/// Generate a 32 bit random value based on the RSSI readings, after disabling all interrupts. Ensure set_lora_modem() is called befrorehand.
/// After calling this function either set_rx_config() or set_tx_config() must be called.
pub async fn get_random_value(&mut self) -> Result<u32, RadioError<BUS>> {
self.sub_set_dio_irq_params(
IrqMask::None.value(),
IrqMask::None.value(),
IrqMask::None.value(),
IrqMask::None.value(),
)
.await?;
let result = self.sub_get_random().await?;
Ok(result)
}
/// Set the reception parameters for the LoRa modem (only). Ensure set_lora_modem() is called befrorehand.
/// spreading_factor [6: 64, 7: 128, 8: 256, 9: 512, 10: 1024, 11: 2048, 12: 4096 chips/symbol]
/// bandwidth [0: 125 kHz, 1: 250 kHz, 2: 500 kHz, 3: Reserved]
/// coding_rate [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
/// preamble_length length in symbols (the hardware adds 4 more symbols)
/// symb_timeout RxSingle timeout value in symbols
/// fixed_len fixed length packets [0: variable, 1: fixed]
/// payload_len payload length when fixed length is used
/// crc_on [0: OFF, 1: ON]
/// freq_hop_on intra-packet frequency hopping [0: OFF, 1: ON]
/// hop_period number of symbols between each hop
/// iq_inverted invert IQ signals [0: not inverted, 1: inverted]
/// rx_continuous reception mode [false: single mode, true: continuous mode]
pub async fn set_rx_config(
&mut self,
spreading_factor: SpreadingFactor,
bandwidth: Bandwidth,
coding_rate: CodingRate,
preamble_length: u16,
symb_timeout: u16,
fixed_len: bool,
payload_len: u8,
crc_on: bool,
_freq_hop_on: bool,
_hop_period: u8,
iq_inverted: bool,
rx_continuous: bool,
) -> Result<(), RadioError<BUS>> {
let mut symb_timeout_final = symb_timeout;
self.rx_continuous = rx_continuous;
if self.rx_continuous {
symb_timeout_final = 0;
}
if fixed_len {
self.max_payload_length = payload_len;
} else {
self.max_payload_length = 0xFFu8;
}
self.sub_set_stop_rx_timer_on_preamble_detect(false).await?;
let mut low_data_rate_optimize = 0x00u8;
if (((spreading_factor == SpreadingFactor::_11) || (spreading_factor == SpreadingFactor::_12))
&& (bandwidth == Bandwidth::_125KHz))
|| ((spreading_factor == SpreadingFactor::_12) && (bandwidth == Bandwidth::_250KHz))
{
low_data_rate_optimize = 0x01u8;
}
let modulation_params = ModulationParams {
spreading_factor: spreading_factor,
bandwidth: bandwidth,
coding_rate: coding_rate,
low_data_rate_optimize: low_data_rate_optimize,
};
let mut preamble_length_final = preamble_length;
if ((spreading_factor == SpreadingFactor::_5) || (spreading_factor == SpreadingFactor::_6))
&& (preamble_length < 12)
{
preamble_length_final = 12;
}
let packet_params = PacketParams {
preamble_length: preamble_length_final,
implicit_header: fixed_len,
payload_length: self.max_payload_length,
crc_on: crc_on,
iq_inverted: iq_inverted,
};
self.modulation_params = Some(modulation_params);
self.packet_params = Some(packet_params);
self.standby().await?;
self.sub_set_modulation_params().await?;
self.sub_set_packet_params().await?;
self.sub_set_lora_symb_num_timeout(symb_timeout_final).await?;
// Optimize the Inverted IQ Operation (see DS_SX1261-2_V1.2 datasheet chapter 15.4)
let mut iq_polarity = [0x00u8];
self.brd_read_registers(Register::IQPolarity, &mut iq_polarity).await?;
if iq_inverted {
self.brd_write_registers(Register::IQPolarity, &[iq_polarity[0] & (!(1 << 2))])
.await?;
} else {
self.brd_write_registers(Register::IQPolarity, &[iq_polarity[0] | (1 << 2)])
.await?;
}
Ok(())
}
/// Set the transmission parameters for the LoRa modem (only).
/// power output power [dBm]
/// spreading_factor [6: 64, 7: 128, 8: 256, 9: 512, 10: 1024, 11: 2048, 12: 4096 chips/symbol]
/// bandwidth [0: 125 kHz, 1: 250 kHz, 2: 500 kHz, 3: Reserved]
/// coding_rate [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
/// preamble_length length in symbols (the hardware adds 4 more symbols)
/// fixed_len fixed length packets [0: variable, 1: fixed]
/// crc_on [0: OFF, 1: ON]
/// freq_hop_on intra-packet frequency hopping [0: OFF, 1: ON]
/// hop_period number of symbols between each hop
/// iq_inverted invert IQ signals [0: not inverted, 1: inverted]
pub async fn set_tx_config(
&mut self,
power: i8,
spreading_factor: SpreadingFactor,
bandwidth: Bandwidth,
coding_rate: CodingRate,
preamble_length: u16,
fixed_len: bool,
crc_on: bool,
_freq_hop_on: bool,
_hop_period: u8,
iq_inverted: bool,
) -> Result<(), RadioError<BUS>> {
let mut low_data_rate_optimize = 0x00u8;
if (((spreading_factor == SpreadingFactor::_11) || (spreading_factor == SpreadingFactor::_12))
&& (bandwidth == Bandwidth::_125KHz))
|| ((spreading_factor == SpreadingFactor::_12) && (bandwidth == Bandwidth::_250KHz))
{
low_data_rate_optimize = 0x01u8;
}
let modulation_params = ModulationParams {
spreading_factor: spreading_factor,
bandwidth: bandwidth,
coding_rate: coding_rate,
low_data_rate_optimize: low_data_rate_optimize,
};
let mut preamble_length_final = preamble_length;
if ((spreading_factor == SpreadingFactor::_5) || (spreading_factor == SpreadingFactor::_6))
&& (preamble_length < 12)
{
preamble_length_final = 12;
}
let packet_params = PacketParams {
preamble_length: preamble_length_final,
implicit_header: fixed_len,
payload_length: self.max_payload_length,
crc_on: crc_on,
iq_inverted: iq_inverted,
};
self.modulation_params = Some(modulation_params);
self.packet_params = Some(packet_params);
self.standby().await?;
self.sub_set_modulation_params().await?;
self.sub_set_packet_params().await?;
// Handle modulation quality with the 500 kHz LoRa bandwidth (see DS_SX1261-2_V1.2 datasheet chapter 15.1)
let mut tx_modulation = [0x00u8];
self.brd_read_registers(Register::TxModulation, &mut tx_modulation)
.await?;
if bandwidth == Bandwidth::_500KHz {
self.brd_write_registers(Register::TxModulation, &[tx_modulation[0] & (!(1 << 2))])
.await?;
} else {
self.brd_write_registers(Register::TxModulation, &[tx_modulation[0] | (1 << 2)])
.await?;
}
self.brd_set_rf_tx_power(power).await?;
Ok(())
}
/// Check if the given RF frequency is supported by the hardware [true: supported, false: unsupported]
pub async fn check_rf_frequency(&mut self, frequency: u32) -> Result<bool, RadioError<BUS>> {
Ok(self.brd_check_rf_frequency(frequency).await?)
}
/// Computes the packet time on air in ms for the given payload for a LoRa modem (can only be called once set_rx_config or set_tx_config have been called)
/// spreading_factor [6: 64, 7: 128, 8: 256, 9: 512, 10: 1024, 11: 2048, 12: 4096 chips/symbol]
/// bandwidth [0: 125 kHz, 1: 250 kHz, 2: 500 kHz, 3: Reserved]
/// coding_rate [1: 4/5, 2: 4/6, 3: 4/7, 4: 4/8]
/// preamble_length length in symbols (the hardware adds 4 more symbols)
/// fixed_len fixed length packets [0: variable, 1: fixed]
/// payload_len sets payload length when fixed length is used
/// crc_on [0: OFF, 1: ON]
pub fn get_time_on_air(
&mut self,
spreading_factor: SpreadingFactor,
bandwidth: Bandwidth,
coding_rate: CodingRate,
preamble_length: u16,
fixed_len: bool,
payload_len: u8,
crc_on: bool,
) -> Result<u32, RadioError<BUS>> {
let numerator = 1000
* Self::get_lora_time_on_air_numerator(
spreading_factor,
bandwidth,
coding_rate,
preamble_length,
fixed_len,
payload_len,
crc_on,
);
let denominator = bandwidth.value_in_hz();
if denominator == 0 {
Err(RadioError::InvalidBandwidth)
} else {
Ok((numerator + denominator - 1) / denominator)
}
}
/// Send the buffer of the given size. Prepares the packet to be sent and sets the radio in transmission [timeout in ms]
pub async fn send(&mut self, buffer: &[u8], timeout: u32) -> Result<(), RadioError<BUS>> {
if self.packet_params.is_some() {
self.sub_set_dio_irq_params(
IrqMask::TxDone.value() | IrqMask::RxTxTimeout.value(),
IrqMask::TxDone.value() | IrqMask::RxTxTimeout.value(),
IrqMask::None.value(),
IrqMask::None.value(),
)
.await?;
let mut packet_params = self.packet_params.as_mut().unwrap();
packet_params.payload_length = buffer.len() as u8;
self.sub_set_packet_params().await?;
self.sub_send_payload(buffer, timeout).await?;
Ok(())
} else {
Err(RadioError::PacketParamsMissing)
}
}
/// Set the radio in sleep mode
pub async fn sleep(&mut self) -> Result<(), RadioError<BUS>> {
self.sub_set_sleep(SleepParams {
wakeup_rtc: false,
reset: false,
warm_start: true,
})
.await?;
Timer::after(Duration::from_millis(2)).await;
Ok(())
}
/// Set the radio in standby mode
pub async fn standby(&mut self) -> Result<(), RadioError<BUS>> {
self.sub_set_standby(StandbyMode::RC).await?;
Ok(())
}
/// Set the radio in reception mode for the given duration [0: continuous, others: timeout (ms)]
pub async fn rx(&mut self, timeout: u32) -> Result<(), RadioError<BUS>> {
self.sub_set_dio_irq_params(
IrqMask::All.value(),
IrqMask::All.value(),
IrqMask::None.value(),
IrqMask::None.value(),
)
.await?;
if self.rx_continuous {
self.sub_set_rx(0xFFFFFF).await?;
} else {
self.sub_set_rx(timeout << 6).await?;
}
Ok(())
}
/// Start a Channel Activity Detection
pub async fn start_cad(&mut self) -> Result<(), RadioError<BUS>> {
self.sub_set_dio_irq_params(
IrqMask::CADDone.value() | IrqMask::CADActivityDetected.value(),
IrqMask::CADDone.value() | IrqMask::CADActivityDetected.value(),
IrqMask::None.value(),
IrqMask::None.value(),
)
.await?;
self.sub_set_cad().await?;
Ok(())
}
/// Sets the radio in continuous wave transmission mode
/// frequency channel RF frequency
/// power output power [dBm]
/// timeout transmission mode timeout [s]
pub async fn set_tx_continuous_wave(
&mut self,
frequency: u32,
power: i8,
_timeout: u16,
) -> Result<(), RadioError<BUS>> {
self.sub_set_rf_frequency(frequency).await?;
self.brd_set_rf_tx_power(power).await?;
self.sub_set_tx_continuous_wave().await?;
Ok(())
}
/// Read the current RSSI value for the LoRa modem (only) [dBm]
pub async fn get_rssi(&mut self) -> Result<i16, RadioError<BUS>> {
let value = self.sub_get_rssi_inst().await?;
Ok(value as i16)
}
/// Write one or more radio registers with a buffer of a given size, starting at the first register address
pub async fn write_registers_from_buffer(
&mut self,
start_register: Register,
buffer: &[u8],
) -> Result<(), RadioError<BUS>> {
self.brd_write_registers(start_register, buffer).await?;
Ok(())
}
/// Read one or more radio registers into a buffer of a given size, starting at the first register address
pub async fn read_registers_into_buffer(
&mut self,
start_register: Register,
buffer: &mut [u8],
) -> Result<(), RadioError<BUS>> {
self.brd_read_registers(start_register, buffer).await?;
Ok(())
}
/// Set the maximum payload length (in bytes) for a LoRa modem (only).
pub async fn set_max_payload_length(&mut self, max: u8) -> Result<(), RadioError<BUS>> {
if self.packet_params.is_some() {
let packet_params = self.packet_params.as_mut().unwrap();
self.max_payload_length = max;
packet_params.payload_length = max;
self.sub_set_packet_params().await?;
Ok(())
} else {
Err(RadioError::PacketParamsMissing)
}
}
/// Get the time required for the board plus radio to get out of sleep [ms]
pub fn get_wakeup_time(&mut self) -> u32 {
self.brd_get_board_tcxo_wakeup_time() + RADIO_WAKEUP_TIME
}
/// Process the radio irq
pub async fn process_irq(
&mut self,
receiving_buffer: Option<&mut [u8]>,
received_len: Option<&mut u8>,
cad_activity_detected: Option<&mut bool>,
) -> Result<(), RadioError<BUS>> {
loop {
info!("process_irq loop entered"); // debug ???
let de = self.sub_get_device_errors().await?;
info!("device_errors: rc_64khz_calibration = {}, rc_13mhz_calibration = {}, pll_calibration = {}, adc_calibration = {}, image_calibration = {}, xosc_start = {}, pll_lock = {}, pa_ramp = {}",
de.rc_64khz_calibration, de.rc_13mhz_calibration, de.pll_calibration, de.adc_calibration, de.image_calibration, de.xosc_start, de.pll_lock, de.pa_ramp);
let st = self.sub_get_status().await?;
info!(
"radio status: cmd_status: {:x}, chip_mode: {:x}",
st.cmd_status, st.chip_mode
);
self.dio1.wait_for_high().await.map_err(|_| DIO1)?;
let operating_mode = self.brd_get_operating_mode();
let irq_flags = self.sub_get_irq_status().await?;
self.sub_clear_irq_status(irq_flags).await?;
info!("process_irq DIO1 satisfied: irq_flags = {:x}", irq_flags); // debug ???
// check for errors and unexpected interrupt masks (based on operation mode)
if (irq_flags & IrqMask::HeaderError.value()) == IrqMask::HeaderError.value() {
if !self.rx_continuous {
self.brd_set_operating_mode(RadioMode::StandbyRC);
}
return Err(RadioError::HeaderError);
} else if (irq_flags & IrqMask::CRCError.value()) == IrqMask::CRCError.value() {
if operating_mode == RadioMode::Receive {
if !self.rx_continuous {
self.brd_set_operating_mode(RadioMode::StandbyRC);
}
return Err(RadioError::CRCErrorOnReceive);
} else {
return Err(RadioError::CRCErrorUnexpected);
}
} else if (irq_flags & IrqMask::RxTxTimeout.value()) == IrqMask::RxTxTimeout.value() {
if operating_mode == RadioMode::Transmit {
self.brd_set_operating_mode(RadioMode::StandbyRC);
return Err(RadioError::TransmitTimeout);
} else if operating_mode == RadioMode::Receive {
self.brd_set_operating_mode(RadioMode::StandbyRC);
return Err(RadioError::ReceiveTimeout);
} else {
return Err(RadioError::TimeoutUnexpected);
}
} else if ((irq_flags & IrqMask::TxDone.value()) == IrqMask::TxDone.value())
&& (operating_mode != RadioMode::Transmit)
{
return Err(RadioError::TransmitDoneUnexpected);
} else if ((irq_flags & IrqMask::RxDone.value()) == IrqMask::RxDone.value())
&& (operating_mode != RadioMode::Receive)
{
return Err(RadioError::ReceiveDoneUnexpected);
} else if (((irq_flags & IrqMask::CADActivityDetected.value()) == IrqMask::CADActivityDetected.value())
|| ((irq_flags & IrqMask::CADDone.value()) == IrqMask::CADDone.value()))
&& (operating_mode != RadioMode::ChannelActivityDetection)
{
return Err(RadioError::CADUnexpected);
}
// debug ???
if (irq_flags & IrqMask::HeaderValid.value()) == IrqMask::HeaderValid.value() {
info!("HeaderValid");
} else if (irq_flags & IrqMask::PreambleDetected.value()) == IrqMask::PreambleDetected.value() {
info!("PreambleDetected");
} else if (irq_flags & IrqMask::SyncwordValid.value()) == IrqMask::SyncwordValid.value() {
info!("SyncwordValid");
}
// handle completions
if (irq_flags & IrqMask::TxDone.value()) == IrqMask::TxDone.value() {
self.brd_set_operating_mode(RadioMode::StandbyRC);
return Ok(());
} else if (irq_flags & IrqMask::RxDone.value()) == IrqMask::RxDone.value() {
if !self.rx_continuous {
self.brd_set_operating_mode(RadioMode::StandbyRC);
// implicit header mode timeout behavior (see DS_SX1261-2_V1.2 datasheet chapter 15.3)
self.brd_write_registers(Register::RTCCtrl, &[0x00]).await?;
let mut evt_clr = [0x00u8];
self.brd_read_registers(Register::EvtClr, &mut evt_clr).await?;
evt_clr[0] |= 1 << 1;
self.brd_write_registers(Register::EvtClr, &evt_clr).await?;
}
if receiving_buffer.is_some() && received_len.is_some() {
*(received_len.unwrap()) = self.sub_get_payload(receiving_buffer.unwrap()).await?;
}
self.packet_status = self.sub_get_packet_status().await?.into();
return Ok(());
} else if (irq_flags & IrqMask::CADDone.value()) == IrqMask::CADDone.value() {
if cad_activity_detected.is_some() {
*(cad_activity_detected.unwrap()) =
(irq_flags & IrqMask::CADActivityDetected.value()) == IrqMask::CADActivityDetected.value();
}
self.brd_set_operating_mode(RadioMode::StandbyRC);
return Ok(());
}
// if DIO1 was driven high for reasons other than an error or operation completion (currently, PreambleDetected, SyncwordValid, and HeaderValid
// are in that category), loop to wait again
}
}
// SX126x-specific functions
/// Set the radio in reception mode with Max LNA gain for the given time (SX126x radios only) [0: continuous, others timeout in ms]
pub async fn set_rx_boosted(&mut self, timeout: u32) -> Result<(), RadioError<BUS>> {
self.sub_set_dio_irq_params(
IrqMask::All.value(),
IrqMask::All.value(),
IrqMask::None.value(),
IrqMask::None.value(),
)
.await?;
if self.rx_continuous {
self.sub_set_rx_boosted(0xFFFFFF).await?; // Rx continuous
} else {
self.sub_set_rx_boosted(timeout << 6).await?;
}
Ok(())
}
/// Set the Rx duty cycle management parameters (SX126x radios only)
/// rx_time structure describing reception timeout value
/// sleep_time structure describing sleep timeout value
pub async fn set_rx_duty_cycle(&mut self, rx_time: u32, sleep_time: u32) -> Result<(), RadioError<BUS>> {
self.sub_set_rx_duty_cycle(rx_time, sleep_time).await?;
Ok(())
}
pub fn get_latest_packet_status(&mut self) -> Option<PacketStatus> {
self.packet_status
}
// Utilities
async fn add_register_to_retention_list(&mut self, register_address: u16) -> Result<(), RadioError<BUS>> {
let mut buffer = [0x00u8; (1 + (2 * MAX_NUMBER_REGS_IN_RETENTION)) as usize];
// Read the address and registers already added to the list
self.brd_read_registers(Register::RetentionList, &mut buffer).await?;
let number_of_registers = buffer[0];
for i in 0..number_of_registers {
if register_address
== ((buffer[(1 + (2 * i)) as usize] as u16) << 8) | (buffer[(2 + (2 * i)) as usize] as u16)
{
return Ok(()); // register already in list
}
}
if number_of_registers < MAX_NUMBER_REGS_IN_RETENTION {
buffer[0] += 1; // increment number of registers
buffer[(1 + (2 * number_of_registers)) as usize] = ((register_address >> 8) & 0xFF) as u8;
buffer[(2 + (2 * number_of_registers)) as usize] = (register_address & 0xFF) as u8;
self.brd_write_registers(Register::RetentionList, &buffer).await?;
Ok(())
} else {
Err(RadioError::RetentionListExceeded)
}
}
fn get_lora_time_on_air_numerator(
spreading_factor: SpreadingFactor,
bandwidth: Bandwidth,
coding_rate: CodingRate,
preamble_length: u16,
fixed_len: bool,
payload_len: u8,
crc_on: bool,
) -> u32 {
let cell_denominator;
let cr_denominator = (coding_rate.value() as i32) + 4;
// Ensure that the preamble length is at least 12 symbols when using SF5 or SF6
let mut preamble_length_final = preamble_length;
if ((spreading_factor == SpreadingFactor::_5) || (spreading_factor == SpreadingFactor::_6))
&& (preamble_length < 12)
{
preamble_length_final = 12;
}
let mut low_data_rate_optimize = false;
if (((spreading_factor == SpreadingFactor::_11) || (spreading_factor == SpreadingFactor::_12))
&& (bandwidth == Bandwidth::_125KHz))
|| ((spreading_factor == SpreadingFactor::_12) && (bandwidth == Bandwidth::_250KHz))
{
low_data_rate_optimize = true;
}
let mut cell_numerator = ((payload_len as i32) << 3) + (if crc_on { 16 } else { 0 })
- (4 * spreading_factor.value() as i32)
+ (if fixed_len { 0 } else { 20 });
if spreading_factor.value() <= 6 {
cell_denominator = 4 * (spreading_factor.value() as i32);
} else {
cell_numerator += 8;
if low_data_rate_optimize {
cell_denominator = 4 * ((spreading_factor.value() as i32) - 2);
} else {
cell_denominator = 4 * (spreading_factor.value() as i32);
}
}
if cell_numerator < 0 {
cell_numerator = 0;
}
let mut intermediate: i32 = (((cell_numerator + cell_denominator - 1) / cell_denominator) * cr_denominator)
+ (preamble_length_final as i32)
+ 12;
if spreading_factor.value() <= 6 {
intermediate = intermediate + 2;
}
(((4 * intermediate) + 1) * (1 << (spreading_factor.value() - 2))) as u32
}
}

View file

@ -0,0 +1,469 @@
use core::fmt::Debug;
use lorawan_device::async_device::radio as device;
#[allow(clippy::upper_case_acronyms)]
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum RadioError<BUS> {
SPI(BUS),
CS,
Reset,
AntRx,
AntTx,
Busy,
DIO1,
PayloadSizeMismatch(usize, usize),
RetentionListExceeded,
InvalidBandwidth,
ModulationParamsMissing,
PacketParamsMissing,
HeaderError,
CRCErrorUnexpected,
CRCErrorOnReceive,
TransmitTimeout,
ReceiveTimeout,
TimeoutUnexpected,
TransmitDoneUnexpected,
ReceiveDoneUnexpected,
CADUnexpected,
}
pub struct RadioSystemError {
pub rc_64khz_calibration: bool,
pub rc_13mhz_calibration: bool,
pub pll_calibration: bool,
pub adc_calibration: bool,
pub image_calibration: bool,
pub xosc_start: bool,
pub pll_lock: bool,
pub pa_ramp: bool,
}
#[derive(Clone, Copy, PartialEq)]
pub enum PacketType {
GFSK = 0x00,
LoRa = 0x01,
None = 0x0F,
}
impl PacketType {
pub const fn value(self) -> u8 {
self as u8
}
pub fn to_enum(value: u8) -> Self {
if value == 0x00 {
PacketType::GFSK
} else if value == 0x01 {
PacketType::LoRa
} else {
PacketType::None
}
}
}
#[derive(Clone, Copy)]
pub struct PacketStatus {
pub rssi: i8,
pub snr: i8,
pub signal_rssi: i8,
pub freq_error: u32,
}
#[derive(Clone, Copy, PartialEq)]
pub enum RadioType {
SX1261,
SX1262,
}
#[derive(Clone, Copy, PartialEq)]
pub enum RadioMode {
Sleep = 0x00, // sleep mode
StandbyRC = 0x01, // standby mode with RC oscillator
StandbyXOSC = 0x02, // standby mode with XOSC oscillator
FrequencySynthesis = 0x03, // frequency synthesis mode
Transmit = 0x04, // transmit mode
Receive = 0x05, // receive mode
ReceiveDutyCycle = 0x06, // receive duty cycle mode
ChannelActivityDetection = 0x07, // channel activity detection mode
}
impl RadioMode {
/// Returns the value of the mode.
pub const fn value(self) -> u8 {
self as u8
}
pub fn to_enum(value: u8) -> Self {
if value == 0x00 {
RadioMode::Sleep
} else if value == 0x01 {
RadioMode::StandbyRC
} else if value == 0x02 {
RadioMode::StandbyXOSC
} else if value == 0x03 {
RadioMode::FrequencySynthesis
} else if value == 0x04 {
RadioMode::Transmit
} else if value == 0x05 {
RadioMode::Receive
} else if value == 0x06 {
RadioMode::ReceiveDutyCycle
} else if value == 0x07 {
RadioMode::ChannelActivityDetection
} else {
RadioMode::Sleep
}
}
}
pub enum RadioState {
Idle = 0x00,
RxRunning = 0x01,
TxRunning = 0x02,
ChannelActivityDetecting = 0x03,
}
impl RadioState {
/// Returns the value of the state.
pub fn value(self) -> u8 {
self as u8
}
}
pub struct RadioStatus {
pub cmd_status: u8,
pub chip_mode: u8,
}
impl RadioStatus {
pub fn value(self) -> u8 {
(self.chip_mode << 4) | (self.cmd_status << 1)
}
}
#[derive(Clone, Copy)]
pub enum IrqMask {
None = 0x0000,
TxDone = 0x0001,
RxDone = 0x0002,
PreambleDetected = 0x0004,
SyncwordValid = 0x0008,
HeaderValid = 0x0010,
HeaderError = 0x0020,
CRCError = 0x0040,
CADDone = 0x0080,
CADActivityDetected = 0x0100,
RxTxTimeout = 0x0200,
All = 0xFFFF,
}
impl IrqMask {
pub fn value(self) -> u16 {
self as u16
}
}
#[derive(Clone, Copy)]
pub enum Register {
PacketParams = 0x0704, // packet configuration
PayloadLength = 0x0702, // payload size
SynchTimeout = 0x0706, // recalculated number of symbols
Syncword = 0x06C0, // Syncword values
LoRaSyncword = 0x0740, // LoRa Syncword value
GeneratedRandomNumber = 0x0819, //32-bit generated random number
AnaLNA = 0x08E2, // disable the LNA
AnaMixer = 0x08E5, // disable the mixer
RxGain = 0x08AC, // RX gain (0x94: power saving, 0x96: rx boosted)
XTATrim = 0x0911, // device internal trimming capacitor
OCP = 0x08E7, // over current protection max value
RetentionList = 0x029F, // retention list
IQPolarity = 0x0736, // optimize the inverted IQ operation (see DS_SX1261-2_V1.2 datasheet chapter 15.4)
TxModulation = 0x0889, // modulation quality with 500 kHz LoRa Bandwidth (see DS_SX1261-2_V1.2 datasheet chapter 15.1)
TxClampCfg = 0x08D8, // better resistance to antenna mismatch (see DS_SX1261-2_V1.2 datasheet chapter 15.2)
RTCCtrl = 0x0902, // RTC control
EvtClr = 0x0944, // event clear
}
impl Register {
pub fn addr(self) -> u16 {
self as u16
}
}
#[derive(Clone, Copy, PartialEq)]
pub enum OpCode {
GetStatus = 0xC0,
WriteRegister = 0x0D,
ReadRegister = 0x1D,
WriteBuffer = 0x0E,
ReadBuffer = 0x1E,
SetSleep = 0x84,
SetStandby = 0x80,
SetFS = 0xC1,
SetTx = 0x83,
SetRx = 0x82,
SetRxDutyCycle = 0x94,
SetCAD = 0xC5,
SetTxContinuousWave = 0xD1,
SetTxContinuousPremable = 0xD2,
SetPacketType = 0x8A,
GetPacketType = 0x11,
SetRFFrequency = 0x86,
SetTxParams = 0x8E,
SetPAConfig = 0x95,
SetCADParams = 0x88,
SetBufferBaseAddress = 0x8F,
SetModulationParams = 0x8B,
SetPacketParams = 0x8C,
GetRxBufferStatus = 0x13,
GetPacketStatus = 0x14,
GetRSSIInst = 0x15,
GetStats = 0x10,
ResetStats = 0x00,
CfgDIOIrq = 0x08,
GetIrqStatus = 0x12,
ClrIrqStatus = 0x02,
Calibrate = 0x89,
CalibrateImage = 0x98,
SetRegulatorMode = 0x96,
GetErrors = 0x17,
ClrErrors = 0x07,
SetTCXOMode = 0x97,
SetTxFallbackMode = 0x93,
SetRFSwitchMode = 0x9D,
SetStopRxTimerOnPreamble = 0x9F,
SetLoRaSymbTimeout = 0xA0,
}
impl OpCode {
pub fn value(self) -> u8 {
self as u8
}
}
pub struct SleepParams {
pub wakeup_rtc: bool, // get out of sleep mode if wakeup signal received from RTC
pub reset: bool,
pub warm_start: bool,
}
impl SleepParams {
pub fn value(self) -> u8 {
((self.warm_start as u8) << 2) | ((self.reset as u8) << 1) | (self.wakeup_rtc as u8)
}
}
#[derive(Clone, Copy, PartialEq)]
pub enum StandbyMode {
RC = 0x00,
XOSC = 0x01,
}
impl StandbyMode {
pub fn value(self) -> u8 {
self as u8
}
}
#[derive(Clone, Copy)]
pub enum RegulatorMode {
UseLDO = 0x00,
UseDCDC = 0x01,
}
impl RegulatorMode {
pub fn value(self) -> u8 {
self as u8
}
}
#[derive(Clone, Copy)]
pub struct CalibrationParams {
pub rc64k_enable: bool, // calibrate RC64K clock
pub rc13m_enable: bool, // calibrate RC13M clock
pub pll_enable: bool, // calibrate PLL
pub adc_pulse_enable: bool, // calibrate ADC Pulse
pub adc_bulkn_enable: bool, // calibrate ADC bulkN
pub adc_bulkp_enable: bool, // calibrate ADC bulkP
pub img_enable: bool,
}
impl CalibrationParams {
pub fn value(self) -> u8 {
((self.img_enable as u8) << 6)
| ((self.adc_bulkp_enable as u8) << 5)
| ((self.adc_bulkn_enable as u8) << 4)
| ((self.adc_pulse_enable as u8) << 3)
| ((self.pll_enable as u8) << 2)
| ((self.rc13m_enable as u8) << 1)
| ((self.rc64k_enable as u8) << 0)
}
}
#[derive(Clone, Copy)]
pub enum TcxoCtrlVoltage {
Ctrl1V6 = 0x00,
Ctrl1V7 = 0x01,
Ctrl1V8 = 0x02,
Ctrl2V2 = 0x03,
Ctrl2V4 = 0x04,
Ctrl2V7 = 0x05,
Ctrl3V0 = 0x06,
Ctrl3V3 = 0x07,
}
impl TcxoCtrlVoltage {
pub fn value(self) -> u8 {
self as u8
}
}
#[derive(Clone, Copy)]
pub enum RampTime {
Ramp10Us = 0x00,
Ramp20Us = 0x01,
Ramp40Us = 0x02,
Ramp80Us = 0x03,
Ramp200Us = 0x04,
Ramp800Us = 0x05,
Ramp1700Us = 0x06,
Ramp3400Us = 0x07,
}
impl RampTime {
pub fn value(self) -> u8 {
self as u8
}
}
#[derive(Clone, Copy, PartialEq)]
pub enum SpreadingFactor {
_5 = 0x05,
_6 = 0x06,
_7 = 0x07,
_8 = 0x08,
_9 = 0x09,
_10 = 0x0A,
_11 = 0x0B,
_12 = 0x0C,
}
impl SpreadingFactor {
pub fn value(self) -> u8 {
self as u8
}
}
impl From<device::SpreadingFactor> for SpreadingFactor {
fn from(sf: device::SpreadingFactor) -> Self {
match sf {
device::SpreadingFactor::_7 => SpreadingFactor::_7,
device::SpreadingFactor::_8 => SpreadingFactor::_8,
device::SpreadingFactor::_9 => SpreadingFactor::_9,
device::SpreadingFactor::_10 => SpreadingFactor::_10,
device::SpreadingFactor::_11 => SpreadingFactor::_11,
device::SpreadingFactor::_12 => SpreadingFactor::_12,
}
}
}
#[derive(Clone, Copy, PartialEq)]
pub enum Bandwidth {
_500KHz = 0x06,
_250KHz = 0x05,
_125KHz = 0x04,
}
impl Bandwidth {
pub fn value(self) -> u8 {
self as u8
}
pub fn value_in_hz(self) -> u32 {
match self {
Bandwidth::_125KHz => 125000u32,
Bandwidth::_250KHz => 250000u32,
Bandwidth::_500KHz => 500000u32,
}
}
}
impl From<device::Bandwidth> for Bandwidth {
fn from(bw: device::Bandwidth) -> Self {
match bw {
device::Bandwidth::_500KHz => Bandwidth::_500KHz,
device::Bandwidth::_250KHz => Bandwidth::_250KHz,
device::Bandwidth::_125KHz => Bandwidth::_125KHz,
}
}
}
#[derive(Clone, Copy)]
pub enum CodingRate {
_4_5 = 0x01,
_4_6 = 0x02,
_4_7 = 0x03,
_4_8 = 0x04,
}
impl CodingRate {
pub fn value(self) -> u8 {
self as u8
}
}
impl From<device::CodingRate> for CodingRate {
fn from(cr: device::CodingRate) -> Self {
match cr {
device::CodingRate::_4_5 => CodingRate::_4_5,
device::CodingRate::_4_6 => CodingRate::_4_6,
device::CodingRate::_4_7 => CodingRate::_4_7,
device::CodingRate::_4_8 => CodingRate::_4_8,
}
}
}
#[derive(Clone, Copy)]
pub struct ModulationParams {
pub spreading_factor: SpreadingFactor,
pub bandwidth: Bandwidth,
pub coding_rate: CodingRate,
pub low_data_rate_optimize: u8,
}
#[derive(Clone, Copy)]
pub struct PacketParams {
pub preamble_length: u16, // number of LoRa symbols in the preamble
pub implicit_header: bool, // if the header is explicit, it will be transmitted in the LoRa packet, but is not transmitted if the header is implicit (known fixed length)
pub payload_length: u8,
pub crc_on: bool,
pub iq_inverted: bool,
}
#[derive(Clone, Copy)]
pub enum CADSymbols {
_1 = 0x00,
_2 = 0x01,
_4 = 0x02,
_8 = 0x03,
_16 = 0x04,
}
impl CADSymbols {
pub fn value(self) -> u8 {
self as u8
}
}
#[derive(Clone, Copy)]
pub enum CADExitMode {
CADOnly = 0x00,
CADRx = 0x01,
CADLBT = 0x10,
}
impl CADExitMode {
pub fn value(self) -> u8 {
self as u8
}
}

View file

@ -0,0 +1,688 @@
use embedded_hal::digital::v2::OutputPin;
use embedded_hal_async::digital::Wait;
use embedded_hal_async::spi::SpiBus;
use super::mod_params::*;
use super::LoRa;
// Internal frequency of the radio
const SX126X_XTAL_FREQ: u32 = 32000000;
// Scaling factor used to perform fixed-point operations
const SX126X_PLL_STEP_SHIFT_AMOUNT: u32 = 14;
// PLL step - scaled with SX126X_PLL_STEP_SHIFT_AMOUNT
const SX126X_PLL_STEP_SCALED: u32 = SX126X_XTAL_FREQ >> (25 - SX126X_PLL_STEP_SHIFT_AMOUNT);
// Maximum value for parameter symbNum
const SX126X_MAX_LORA_SYMB_NUM_TIMEOUT: u8 = 248;
// Provides board-specific functionality for Semtech SX126x-based boards
impl<SPI, CS, RESET, ANTRX, ANTTX, WAIT, BUS> LoRa<SPI, CS, RESET, ANTRX, ANTTX, WAIT>
where
SPI: SpiBus<u8, Error = BUS>,
CS: OutputPin,
RESET: OutputPin,
ANTRX: OutputPin,
ANTTX: OutputPin,
WAIT: Wait,
{
// Initialize the radio driver
pub(super) async fn sub_init(&mut self) -> Result<(), RadioError<BUS>> {
self.brd_reset().await?;
self.brd_wakeup().await?;
self.sub_set_standby(StandbyMode::RC).await?;
self.brd_io_tcxo_init().await?;
self.brd_io_rf_switch_init().await?;
self.image_calibrated = false;
Ok(())
}
// Wakeup the radio if it is in Sleep mode and check that Busy is low
pub(super) async fn sub_check_device_ready(&mut self) -> Result<(), RadioError<BUS>> {
let operating_mode = self.brd_get_operating_mode();
if operating_mode == RadioMode::Sleep || operating_mode == RadioMode::ReceiveDutyCycle {
self.brd_wakeup().await?;
self.brd_ant_sw_on().await?;
}
self.brd_wait_on_busy().await?;
Ok(())
}
// Save the payload to be sent in the radio buffer
pub(super) async fn sub_set_payload(&mut self, payload: &[u8]) -> Result<(), RadioError<BUS>> {
self.brd_write_buffer(0x00, payload).await?;
Ok(())
}
// Read the payload received.
pub(super) async fn sub_get_payload(&mut self, buffer: &mut [u8]) -> Result<u8, RadioError<BUS>> {
let (size, offset) = self.sub_get_rx_buffer_status().await?;
if (size as usize) > buffer.len() {
Err(RadioError::PayloadSizeMismatch(size as usize, buffer.len()))
} else {
self.brd_read_buffer(offset, buffer).await?;
Ok(size)
}
}
// Send a payload
pub(super) async fn sub_send_payload(&mut self, payload: &[u8], timeout: u32) -> Result<(), RadioError<BUS>> {
self.sub_set_payload(payload).await?;
self.sub_set_tx(timeout).await?;
Ok(())
}
// Get a 32-bit random value generated by the radio. A valid packet type must have been configured before using this command.
//
// The radio must be in reception mode before executing this function. This code can potentially result in interrupt generation. It is the responsibility of
// the calling code to disable radio interrupts before calling this function, and re-enable them afterwards if necessary, or be certain that any interrupts
// generated during this process will not cause undesired side-effects in the software.
//
// The random numbers produced by the generator do not have a uniform or Gaussian distribution. If uniformity is needed, perform appropriate software post-processing.
pub(super) async fn sub_get_random(&mut self) -> Result<u32, RadioError<BUS>> {
let mut reg_ana_lna_buffer_original = [0x00u8];
let mut reg_ana_mixer_buffer_original = [0x00u8];
let mut reg_ana_lna_buffer = [0x00u8];
let mut reg_ana_mixer_buffer = [0x00u8];
let mut number_buffer = [0x00u8, 0x00u8, 0x00u8, 0x00u8];
self.brd_read_registers(Register::AnaLNA, &mut reg_ana_lna_buffer_original)
.await?;
reg_ana_lna_buffer[0] = reg_ana_lna_buffer_original[0] & (!(1 << 0));
self.brd_write_registers(Register::AnaLNA, &reg_ana_lna_buffer).await?;
self.brd_read_registers(Register::AnaMixer, &mut reg_ana_mixer_buffer_original)
.await?;
reg_ana_mixer_buffer[0] = reg_ana_mixer_buffer_original[0] & (!(1 << 7));
self.brd_write_registers(Register::AnaMixer, &reg_ana_mixer_buffer)
.await?;
// Set radio in continuous reception
self.sub_set_rx(0xFFFFFFu32).await?;
self.brd_read_registers(Register::GeneratedRandomNumber, &mut number_buffer)
.await?;
self.sub_set_standby(StandbyMode::RC).await?;
self.brd_write_registers(Register::AnaLNA, &reg_ana_lna_buffer_original)
.await?;
self.brd_write_registers(Register::AnaMixer, &reg_ana_mixer_buffer_original)
.await?;
Ok(Self::convert_u8_buffer_to_u32(&number_buffer))
}
// Set the radio in sleep mode
pub(super) async fn sub_set_sleep(&mut self, sleep_config: SleepParams) -> Result<(), RadioError<BUS>> {
self.brd_ant_sw_off().await?;
let _fix_rx = self.antenna_rx.set_low();
let _fix_tx = self.antenna_tx.set_low();
if !sleep_config.warm_start {
self.image_calibrated = false;
}
self.brd_write_command(OpCode::SetSleep, &[sleep_config.value()])
.await?;
self.brd_set_operating_mode(RadioMode::Sleep);
Ok(())
}
// Set the radio in configuration mode
pub(super) async fn sub_set_standby(&mut self, mode: StandbyMode) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetStandby, &[mode.value()]).await?;
if mode == StandbyMode::RC {
self.brd_set_operating_mode(RadioMode::StandbyRC);
} else {
self.brd_set_operating_mode(RadioMode::StandbyXOSC);
}
let _fix_rx = self.antenna_rx.set_low();
let _fix_tx = self.antenna_tx.set_low();
Ok(())
}
// Set the radio in FS mode
pub(super) async fn sub_set_fs(&mut self) -> Result<(), RadioError<BUS>> {
// antenna settings ???
self.brd_write_command(OpCode::SetFS, &[]).await?;
self.brd_set_operating_mode(RadioMode::FrequencySynthesis);
Ok(())
}
// Set the radio in transmission mode with timeout specified
pub(super) async fn sub_set_tx(&mut self, timeout: u32) -> Result<(), RadioError<BUS>> {
let buffer = [
Self::timeout_1(timeout),
Self::timeout_2(timeout),
Self::timeout_3(timeout),
];
let _fix_rx = self.antenna_rx.set_low();
let _fix_tx = self.antenna_tx.set_high();
self.brd_set_operating_mode(RadioMode::Transmit);
self.brd_write_command(OpCode::SetTx, &buffer).await?;
Ok(())
}
// Set the radio in reception mode with timeout specified
pub(super) async fn sub_set_rx(&mut self, timeout: u32) -> Result<(), RadioError<BUS>> {
let buffer = [
Self::timeout_1(timeout),
Self::timeout_2(timeout),
Self::timeout_3(timeout),
];
let _fix_rx = self.antenna_rx.set_high();
let _fix_tx = self.antenna_tx.set_low();
self.brd_set_operating_mode(RadioMode::Receive);
self.brd_write_registers(Register::RxGain, &[0x94u8]).await?;
self.brd_write_command(OpCode::SetRx, &buffer).await?;
Ok(())
}
// Set the radio in reception mode with Boosted LNA gain and timeout specified
pub(super) async fn sub_set_rx_boosted(&mut self, timeout: u32) -> Result<(), RadioError<BUS>> {
let buffer = [
Self::timeout_1(timeout),
Self::timeout_2(timeout),
Self::timeout_3(timeout),
];
let _fix_rx = self.antenna_rx.set_high();
let _fix_tx = self.antenna_tx.set_low();
self.brd_set_operating_mode(RadioMode::Receive);
// set max LNA gain, increase current by ~2mA for around ~3dB in sensitivity
self.brd_write_registers(Register::RxGain, &[0x96u8]).await?;
self.brd_write_command(OpCode::SetRx, &buffer).await?;
Ok(())
}
// Set the Rx duty cycle management parameters
pub(super) async fn sub_set_rx_duty_cycle(&mut self, rx_time: u32, sleep_time: u32) -> Result<(), RadioError<BUS>> {
let buffer = [
((rx_time >> 16) & 0xFF) as u8,
((rx_time >> 8) & 0xFF) as u8,
(rx_time & 0xFF) as u8,
((sleep_time >> 16) & 0xFF) as u8,
((sleep_time >> 8) & 0xFF) as u8,
(sleep_time & 0xFF) as u8,
];
// antenna settings ???
self.brd_write_command(OpCode::SetRxDutyCycle, &buffer).await?;
self.brd_set_operating_mode(RadioMode::ReceiveDutyCycle);
Ok(())
}
// Set the radio in CAD mode
pub(super) async fn sub_set_cad(&mut self) -> Result<(), RadioError<BUS>> {
let _fix_rx = self.antenna_rx.set_high();
let _fix_tx = self.antenna_tx.set_low();
self.brd_write_command(OpCode::SetCAD, &[]).await?;
self.brd_set_operating_mode(RadioMode::ChannelActivityDetection);
Ok(())
}
// Set the radio in continuous wave transmission mode
pub(super) async fn sub_set_tx_continuous_wave(&mut self) -> Result<(), RadioError<BUS>> {
let _fix_rx = self.antenna_rx.set_low();
let _fix_tx = self.antenna_tx.set_high();
self.brd_write_command(OpCode::SetTxContinuousWave, &[]).await?;
self.brd_set_operating_mode(RadioMode::Transmit);
Ok(())
}
// Set the radio in continuous preamble transmission mode
pub(super) async fn sub_set_tx_infinite_preamble(&mut self) -> Result<(), RadioError<BUS>> {
let _fix_rx = self.antenna_rx.set_low();
let _fix_tx = self.antenna_tx.set_high();
self.brd_write_command(OpCode::SetTxContinuousPremable, &[]).await?;
self.brd_set_operating_mode(RadioMode::Transmit);
Ok(())
}
// Decide which interrupt will stop the internal radio rx timer.
// false timer stop after header/syncword detection
// true timer stop after preamble detection
pub(super) async fn sub_set_stop_rx_timer_on_preamble_detect(
&mut self,
enable: bool,
) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetStopRxTimerOnPreamble, &[enable as u8])
.await?;
Ok(())
}
// Set the number of symbols the radio will wait to validate a reception
pub(super) async fn sub_set_lora_symb_num_timeout(&mut self, symb_num: u16) -> Result<(), RadioError<BUS>> {
let mut exp = 0u8;
let mut reg;
let mut mant = ((core::cmp::min(symb_num, SX126X_MAX_LORA_SYMB_NUM_TIMEOUT as u16) as u8) + 1) >> 1;
while mant > 31 {
mant = (mant + 3) >> 2;
exp += 1;
}
reg = mant << ((2 * exp) + 1);
self.brd_write_command(OpCode::SetLoRaSymbTimeout, &[reg]).await?;
if symb_num != 0 {
reg = exp + (mant << 3);
self.brd_write_registers(Register::SynchTimeout, &[reg]).await?;
}
Ok(())
}
// Set the power regulators operating mode (LDO or DC_DC). Using only LDO implies that the Rx or Tx current is doubled
pub(super) async fn sub_set_regulator_mode(&mut self, mode: RegulatorMode) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetRegulatorMode, &[mode.value()])
.await?;
Ok(())
}
// Calibrate the given radio block
pub(super) async fn sub_calibrate(&mut self, calibrate_params: CalibrationParams) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::Calibrate, &[calibrate_params.value()])
.await?;
Ok(())
}
// Calibrate the image rejection based on the given frequency
pub(super) async fn sub_calibrate_image(&mut self, freq: u32) -> Result<(), RadioError<BUS>> {
let mut cal_freq = [0x00u8, 0x00u8];
if freq > 900000000 {
cal_freq[0] = 0xE1;
cal_freq[1] = 0xE9;
} else if freq > 850000000 {
cal_freq[0] = 0xD7;
cal_freq[1] = 0xDB;
} else if freq > 770000000 {
cal_freq[0] = 0xC1;
cal_freq[1] = 0xC5;
} else if freq > 460000000 {
cal_freq[0] = 0x75;
cal_freq[1] = 0x81;
} else if freq > 425000000 {
cal_freq[0] = 0x6B;
cal_freq[1] = 0x6F;
}
self.brd_write_command(OpCode::CalibrateImage, &cal_freq).await?;
Ok(())
}
// Activate the extention of the timeout when a long preamble is used
pub(super) async fn sub_set_long_preamble(&mut self, _enable: u8) -> Result<(), RadioError<BUS>> {
Ok(()) // no operation currently
}
// Set the transmission parameters
// hp_max 0 for sx1261, 7 for sx1262
// device_sel 1 for sx1261, 0 for sx1262
// pa_lut 0 for 14dBm LUT, 1 for 22dBm LUT
pub(super) async fn sub_set_pa_config(
&mut self,
pa_duty_cycle: u8,
hp_max: u8,
device_sel: u8,
pa_lut: u8,
) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetPAConfig, &[pa_duty_cycle, hp_max, device_sel, pa_lut])
.await?;
Ok(())
}
// Define into which mode the chip goes after a TX / RX done
pub(super) async fn sub_set_rx_tx_fallback_mode(&mut self, fallback_mode: u8) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetTxFallbackMode, &[fallback_mode])
.await?;
Ok(())
}
// Set the IRQ mask and DIO masks
pub(super) async fn sub_set_dio_irq_params(
&mut self,
irq_mask: u16,
dio1_mask: u16,
dio2_mask: u16,
dio3_mask: u16,
) -> Result<(), RadioError<BUS>> {
let mut buffer = [0x00u8; 8];
buffer[0] = ((irq_mask >> 8) & 0x00FF) as u8;
buffer[1] = (irq_mask & 0x00FF) as u8;
buffer[2] = ((dio1_mask >> 8) & 0x00FF) as u8;
buffer[3] = (dio1_mask & 0x00FF) as u8;
buffer[4] = ((dio2_mask >> 8) & 0x00FF) as u8;
buffer[5] = (dio2_mask & 0x00FF) as u8;
buffer[6] = ((dio3_mask >> 8) & 0x00FF) as u8;
buffer[7] = (dio3_mask & 0x00FF) as u8;
self.brd_write_command(OpCode::CfgDIOIrq, &buffer).await?;
Ok(())
}
// Return the current IRQ status
pub(super) async fn sub_get_irq_status(&mut self) -> Result<u16, RadioError<BUS>> {
let mut irq_status = [0x00u8, 0x00u8];
self.brd_read_command(OpCode::GetIrqStatus, &mut irq_status).await?;
Ok(((irq_status[0] as u16) << 8) | (irq_status[1] as u16))
}
// Indicate if DIO2 is used to control an RF Switch
pub(super) async fn sub_set_dio2_as_rf_switch_ctrl(&mut self, enable: bool) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetRFSwitchMode, &[enable as u8]).await?;
Ok(())
}
// Indicate if the radio main clock is supplied from a TCXO
// tcxo_voltage voltage used to control the TCXO on/off from DIO3
// timeout duration given to the TCXO to go to 32MHz
pub(super) async fn sub_set_dio3_as_tcxo_ctrl(
&mut self,
tcxo_voltage: TcxoCtrlVoltage,
timeout: u32,
) -> Result<(), RadioError<BUS>> {
let buffer = [
tcxo_voltage.value() & 0x07,
Self::timeout_1(timeout),
Self::timeout_2(timeout),
Self::timeout_3(timeout),
];
self.brd_write_command(OpCode::SetTCXOMode, &buffer).await?;
Ok(())
}
// Set the RF frequency (Hz)
pub(super) async fn sub_set_rf_frequency(&mut self, frequency: u32) -> Result<(), RadioError<BUS>> {
let mut buffer = [0x00u8; 4];
if !self.image_calibrated {
self.sub_calibrate_image(frequency).await?;
self.image_calibrated = true;
}
let freq_in_pll_steps = Self::convert_freq_in_hz_to_pll_step(frequency);
buffer[0] = ((freq_in_pll_steps >> 24) & 0xFF) as u8;
buffer[1] = ((freq_in_pll_steps >> 16) & 0xFF) as u8;
buffer[2] = ((freq_in_pll_steps >> 8) & 0xFF) as u8;
buffer[3] = (freq_in_pll_steps & 0xFF) as u8;
self.brd_write_command(OpCode::SetRFFrequency, &buffer).await?;
Ok(())
}
// Set the radio for the given protocol (LoRa or GFSK). This method has to be called before setting RF frequency, modulation paramaters, and packet paramaters.
pub(super) async fn sub_set_packet_type(&mut self, packet_type: PacketType) -> Result<(), RadioError<BUS>> {
self.packet_type = packet_type;
self.brd_write_command(OpCode::SetPacketType, &[packet_type.value()])
.await?;
Ok(())
}
// Get the current radio protocol (LoRa or GFSK)
pub(super) fn sub_get_packet_type(&mut self) -> PacketType {
self.packet_type
}
// Set the transmission parameters
// power RF output power [-18..13] dBm
// ramp_time transmission ramp up time
pub(super) async fn sub_set_tx_params(
&mut self,
mut power: i8,
ramp_time: RampTime,
) -> Result<(), RadioError<BUS>> {
if self.brd_get_radio_type() == RadioType::SX1261 {
if power == 15 {
self.sub_set_pa_config(0x06, 0x00, 0x01, 0x01).await?;
} else {
self.sub_set_pa_config(0x04, 0x00, 0x01, 0x01).await?;
}
if power >= 14 {
power = 14;
} else if power < -17 {
power = -17;
}
} else {
// Provide better resistance of the SX1262 Tx to antenna mismatch (see DS_SX1261-2_V1.2 datasheet chapter 15.2)
let mut tx_clamp_cfg = [0x00u8];
self.brd_read_registers(Register::TxClampCfg, &mut tx_clamp_cfg).await?;
tx_clamp_cfg[0] = tx_clamp_cfg[0] | (0x0F << 1);
self.brd_write_registers(Register::TxClampCfg, &tx_clamp_cfg).await?;
self.sub_set_pa_config(0x04, 0x07, 0x00, 0x01).await?;
if power > 22 {
power = 22;
} else if power < -9 {
power = -9;
}
}
// power conversion of negative number from i8 to u8 ???
self.brd_write_command(OpCode::SetTxParams, &[power as u8, ramp_time.value()])
.await?;
Ok(())
}
// Set the modulation parameters
pub(super) async fn sub_set_modulation_params(&mut self) -> Result<(), RadioError<BUS>> {
if self.modulation_params.is_some() {
let mut buffer = [0x00u8; 4];
// Since this driver only supports LoRa, ensure the packet type is set accordingly
self.sub_set_packet_type(PacketType::LoRa).await?;
let modulation_params = self.modulation_params.unwrap();
buffer[0] = modulation_params.spreading_factor.value();
buffer[1] = modulation_params.bandwidth.value();
buffer[2] = modulation_params.coding_rate.value();
buffer[3] = modulation_params.low_data_rate_optimize;
self.brd_write_command(OpCode::SetModulationParams, &buffer).await?;
Ok(())
} else {
Err(RadioError::ModulationParamsMissing)
}
}
// Set the packet parameters
pub(super) async fn sub_set_packet_params(&mut self) -> Result<(), RadioError<BUS>> {
if self.packet_params.is_some() {
let mut buffer = [0x00u8; 6];
// Since this driver only supports LoRa, ensure the packet type is set accordingly
self.sub_set_packet_type(PacketType::LoRa).await?;
let packet_params = self.packet_params.unwrap();
buffer[0] = ((packet_params.preamble_length >> 8) & 0xFF) as u8;
buffer[1] = (packet_params.preamble_length & 0xFF) as u8;
buffer[2] = packet_params.implicit_header as u8;
buffer[3] = packet_params.payload_length;
buffer[4] = packet_params.crc_on as u8;
buffer[5] = packet_params.iq_inverted as u8;
self.brd_write_command(OpCode::SetPacketParams, &buffer).await?;
Ok(())
} else {
Err(RadioError::PacketParamsMissing)
}
}
// Set the channel activity detection (CAD) parameters
// symbols number of symbols to use for CAD operations
// det_peak limit for detection of SNR peak used in the CAD
// det_min minimum symbol recognition for CAD
// exit_mode operation to be done at the end of CAD action
// timeout timeout value to abort the CAD activity
pub(super) async fn sub_set_cad_params(
&mut self,
symbols: CADSymbols,
det_peak: u8,
det_min: u8,
exit_mode: CADExitMode,
timeout: u32,
) -> Result<(), RadioError<BUS>> {
let mut buffer = [0x00u8; 7];
buffer[0] = symbols.value();
buffer[1] = det_peak;
buffer[2] = det_min;
buffer[3] = exit_mode.value();
buffer[4] = Self::timeout_1(timeout);
buffer[5] = Self::timeout_2(timeout);
buffer[6] = Self::timeout_3(timeout);
self.brd_write_command(OpCode::SetCADParams, &buffer).await?;
self.brd_set_operating_mode(RadioMode::ChannelActivityDetection);
Ok(())
}
// Set the data buffer base address for transmission and reception
pub(super) async fn sub_set_buffer_base_address(
&mut self,
tx_base_address: u8,
rx_base_address: u8,
) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::SetBufferBaseAddress, &[tx_base_address, rx_base_address])
.await?;
Ok(())
}
// Get the current radio status
pub(super) async fn sub_get_status(&mut self) -> Result<RadioStatus, RadioError<BUS>> {
let status = self.brd_read_command(OpCode::GetStatus, &mut []).await?;
Ok(RadioStatus {
cmd_status: (status & (0x07 << 1)) >> 1,
chip_mode: (status & (0x07 << 4)) >> 4,
})
}
// Get the instantaneous RSSI value for the last packet received
pub(super) async fn sub_get_rssi_inst(&mut self) -> Result<i8, RadioError<BUS>> {
let mut buffer = [0x00u8];
self.brd_read_command(OpCode::GetRSSIInst, &mut buffer).await?;
let rssi: i8 = (-(buffer[0] as i8)) >> 1; // check this ???
Ok(rssi)
}
// Get the last received packet buffer status
pub(super) async fn sub_get_rx_buffer_status(&mut self) -> Result<(u8, u8), RadioError<BUS>> {
if self.packet_params.is_some() {
let mut status = [0x00u8; 2];
let mut payload_length_buffer = [0x00u8];
self.brd_read_command(OpCode::GetRxBufferStatus, &mut status).await?;
if (self.sub_get_packet_type() == PacketType::LoRa) && self.packet_params.unwrap().implicit_header {
self.brd_read_registers(Register::PayloadLength, &mut payload_length_buffer)
.await?;
} else {
payload_length_buffer[0] = status[0];
}
let payload_length = payload_length_buffer[0];
let offset = status[1];
Ok((payload_length, offset))
} else {
Err(RadioError::PacketParamsMissing)
}
}
// Get the last received packet payload status
pub(super) async fn sub_get_packet_status(&mut self) -> Result<PacketStatus, RadioError<BUS>> {
let mut status = [0x00u8; 3];
self.brd_read_command(OpCode::GetPacketStatus, &mut status).await?;
// check this ???
let rssi = (-(status[0] as i8)) >> 1;
let snr = ((status[1] as i8) + 2) >> 2;
let signal_rssi = (-(status[2] as i8)) >> 1;
let freq_error = self.frequency_error;
Ok(PacketStatus {
rssi,
snr,
signal_rssi,
freq_error,
})
}
// Get the possible system errors
pub(super) async fn sub_get_device_errors(&mut self) -> Result<RadioSystemError, RadioError<BUS>> {
let mut errors = [0x00u8; 2];
self.brd_read_command(OpCode::GetErrors, &mut errors).await?;
Ok(RadioSystemError {
rc_64khz_calibration: (errors[1] & (1 << 0)) != 0,
rc_13mhz_calibration: (errors[1] & (1 << 1)) != 0,
pll_calibration: (errors[1] & (1 << 2)) != 0,
adc_calibration: (errors[1] & (1 << 3)) != 0,
image_calibration: (errors[1] & (1 << 4)) != 0,
xosc_start: (errors[1] & (1 << 5)) != 0,
pll_lock: (errors[1] & (1 << 6)) != 0,
pa_ramp: (errors[0] & (1 << 0)) != 0,
})
}
// Clear all the errors in the device
pub(super) async fn sub_clear_device_errors(&mut self) -> Result<(), RadioError<BUS>> {
self.brd_write_command(OpCode::ClrErrors, &[0x00u8, 0x00u8]).await?;
Ok(())
}
// Clear the IRQs
pub(super) async fn sub_clear_irq_status(&mut self, irq: u16) -> Result<(), RadioError<BUS>> {
let mut buffer = [0x00u8, 0x00u8];
buffer[0] = ((irq >> 8) & 0xFF) as u8;
buffer[1] = (irq & 0xFF) as u8;
self.brd_write_command(OpCode::ClrIrqStatus, &buffer).await?;
Ok(())
}
// Utility functions
fn timeout_1(timeout: u32) -> u8 {
((timeout >> 16) & 0xFF) as u8
}
fn timeout_2(timeout: u32) -> u8 {
((timeout >> 8) & 0xFF) as u8
}
fn timeout_3(timeout: u32) -> u8 {
(timeout & 0xFF) as u8
}
// check this ???
fn convert_u8_buffer_to_u32(buffer: &[u8; 4]) -> u32 {
let b0 = buffer[0] as u32;
let b1 = buffer[1] as u32;
let b2 = buffer[2] as u32;
let b3 = buffer[3] as u32;
(b0 << 24) | (b1 << 16) | (b2 << 8) | b3
}
fn convert_freq_in_hz_to_pll_step(freq_in_hz: u32) -> u32 {
// Get integer and fractional parts of the frequency computed with a PLL step scaled value
let steps_int = freq_in_hz / SX126X_PLL_STEP_SCALED;
let steps_frac = freq_in_hz - (steps_int * SX126X_PLL_STEP_SCALED);
(steps_int << SX126X_PLL_STEP_SHIFT_AMOUNT)
+ (((steps_frac << SX126X_PLL_STEP_SHIFT_AMOUNT) + (SX126X_PLL_STEP_SCALED >> 1)) / SX126X_PLL_STEP_SCALED)
}
}

View file

@ -5,7 +5,8 @@ version = "0.1.0"
[features]
default = ["nightly"]
nightly = ["embassy-executor/nightly", "embassy-nrf/nightly", "embassy-net/nightly", "embassy-nrf/unstable-traits", "embassy-usb", "embedded-io/async", "embassy-net"]
nightly = ["embassy-executor/nightly", "embassy-nrf/nightly", "embassy-net/nightly", "embassy-nrf/unstable-traits", "embassy-usb", "embedded-io/async", "embassy-net",
"embassy-lora", "lorawan-device", "lorawan"]
[dependencies]
embassy-futures = { version = "0.1.0", path = "../../embassy-futures" }
@ -16,6 +17,10 @@ embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["defm
embassy-net = { version = "0.1.0", path = "../../embassy-net", features = ["defmt", "tcp", "dhcpv4", "medium-ethernet", "pool-16"], optional = true }
embassy-usb = { version = "0.1.0", path = "../../embassy-usb", features = ["defmt"], optional = true }
embedded-io = "0.3.0"
embassy-lora = { version = "0.1.0", path = "../../embassy-lora", features = ["rak4631", "time", "defmt"], optional = true }
lorawan-device = { version = "0.8.0", default-features = false, features = ["async"], optional = true }
lorawan = { version = "0.7.1", default-features = false, features = ["default-crypto"], optional = true }
defmt = "0.3"
defmt-rtt = "0.3"

View file

@ -0,0 +1,84 @@
//! This example runs on the RAK4631 WisBlock, which has an nRF52840 MCU and Semtech Sx126x radio.
#![no_std]
#![no_main]
#![macro_use]
#![allow(dead_code)]
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_lora::sx126x::*;
use embassy_nrf::gpio::{Input, Level, Output, OutputDrive, Pin as _, Pull};
use embassy_nrf::{interrupt, spim};
use embassy_time::{Duration, Timer};
use lorawan_device::async_device::radio::{Bandwidth, CodingRate, PhyRxTx, RfConfig, SpreadingFactor};
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p = embassy_nrf::init(Default::default());
let mut spi_config = spim::Config::default();
spi_config.frequency = spim::Frequency::M1; // M16 ???
let mut radio = {
let irq = interrupt::take!(SPIM1_SPIS1_TWIM1_TWIS1_SPI1_TWI1);
let spim = spim::Spim::new(p.TWISPI1, irq, p.P1_11, p.P1_13, p.P1_12, spi_config);
let cs = Output::new(p.P1_10, Level::High, OutputDrive::Standard);
let reset = Output::new(p.P1_06, Level::High, OutputDrive::Standard);
let dio1 = Input::new(p.P1_15.degrade(), Pull::Down);
let busy = Input::new(p.P1_14.degrade(), Pull::Down);
let antenna_rx = Output::new(p.P1_05, Level::Low, OutputDrive::Standard);
let antenna_tx = Output::new(p.P1_07, Level::Low, OutputDrive::Standard);
match Sx126xRadio::new(spim, cs, reset, antenna_rx, antenna_tx, dio1, busy, false).await {
Ok(r) => r,
Err(err) => {
info!("Sx126xRadio error = {}", err);
return;
}
}
};
let mut debug_indicator = Output::new(p.P1_03, Level::Low, OutputDrive::Standard);
let mut start_indicator = Output::new(p.P1_04, Level::Low, OutputDrive::Standard);
start_indicator.set_high();
Timer::after(Duration::from_secs(5)).await;
start_indicator.set_low();
match radio.lora.sleep().await {
Ok(()) => info!("Sleep successful"),
Err(err) => info!("Sleep unsuccessful = {}", err),
}
let rf_config = RfConfig {
frequency: 903900000, // channel in Hz
bandwidth: Bandwidth::_250KHz,
spreading_factor: SpreadingFactor::_10,
coding_rate: CodingRate::_4_8,
};
let mut buffer = [00u8; 100];
// P2P receive
match radio.rx(rf_config, &mut buffer).await {
Ok((buffer_len, rx_quality)) => info!(
"RX received = {:?} with length = {} rssi = {} snr = {}",
&buffer[0..buffer_len],
buffer_len,
rx_quality.rssi(),
rx_quality.snr()
),
Err(err) => info!("RX error = {}", err),
}
match radio.lora.sleep().await {
Ok(()) => info!("Sleep successful"),
Err(err) => info!("Sleep unsuccessful = {}", err),
}
debug_indicator.set_high();
Timer::after(Duration::from_secs(5)).await;
debug_indicator.set_low();
}

View file

@ -0,0 +1,173 @@
//! This example runs on the RAK4631 WisBlock, which has an nRF52840 MCU and Semtech Sx126x radio.
#![no_std]
#![no_main]
#![macro_use]
#![feature(type_alias_impl_trait)]
#![feature(alloc_error_handler)]
#![allow(incomplete_features)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_lora::sx126x::*;
use embassy_nrf::gpio::{AnyPin, Input, Level, Output, OutputDrive, Pin as _, Pull};
use embassy_nrf::temp::Temp;
use embassy_nrf::{interrupt, spim};
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::pubsub::{PubSubChannel, Publisher};
use embassy_time::{Duration, Timer};
use lorawan_device::async_device::radio::{Bandwidth, CodingRate, PhyRxTx, RfConfig, SpreadingFactor, TxConfig};
use {defmt_rtt as _, panic_probe as _, panic_probe as _};
// Sensor packet constants
const TEMPERATURE_UID: u8 = 0x01;
const MOTION_UID: u8 = 0x02;
// Message bus: queue of 2, 1 subscriber (Lora P2P), 2 publishers (temperature, motion detection)
static MESSAGE_BUS: PubSubChannel<CriticalSectionRawMutex, Message, 2, 1, 2> = PubSubChannel::new();
#[derive(Clone, defmt::Format)]
enum Message {
Temperature(i32),
MotionDetected,
}
#[embassy_executor::task]
async fn temperature_task(
mut temperature: Temp<'static>,
publisher: Publisher<'static, CriticalSectionRawMutex, Message, 2, 1, 2>,
) {
Timer::after(Duration::from_secs(45)).await; // stabilize for 45 seconds
let mut temperature_reporting_threshhold = 10;
loop {
let value = temperature.read().await;
let mut temperature_val = value.to_num::<i32>();
info!("Temperature: {}", temperature_val); // debug ???
// only report every 2 degree Celsius drops, from 9 through 5, but starting at 3 always report
if temperature_val == 8 || temperature_val == 6 || temperature_val == 4 {
temperature_val += 1;
}
if temperature_reporting_threshhold > temperature_val
&& (temperature_val == 9 || temperature_val == 7 || temperature_val == 5)
{
temperature_reporting_threshhold = temperature_val;
publisher.publish(Message::Temperature(temperature_val)).await;
} else if temperature_val <= 3 {
publisher.publish(Message::Temperature(temperature_val)).await;
}
Timer::after(Duration::from_secs(20 * 60)).await;
}
}
#[embassy_executor::task]
async fn motion_detection_task(
mut pir_pin: Input<'static, AnyPin>,
publisher: Publisher<'static, CriticalSectionRawMutex, Message, 2, 1, 2>,
) {
Timer::after(Duration::from_secs(30)).await; // stabilize for 30 seconds
loop {
// wait for motion detection
pir_pin.wait_for_low().await;
publisher.publish(Message::MotionDetected).await;
// wait a minute before setting up for more motion detection
Timer::after(Duration::from_secs(60)).await;
}
}
#[embassy_executor::main]
async fn main(spawner: Spawner) {
let p = embassy_nrf::init(Default::default());
// set up to funnel temperature and motion detection events to the Lora Tx task
let mut lora_tx_subscriber = unwrap!(MESSAGE_BUS.subscriber());
let temperature_publisher = unwrap!(MESSAGE_BUS.publisher());
let motion_detection_publisher = unwrap!(MESSAGE_BUS.publisher());
let mut spi_config = spim::Config::default();
spi_config.frequency = spim::Frequency::M1; // M16 ???
let mut radio = {
let irq = interrupt::take!(SPIM1_SPIS1_TWIM1_TWIS1_SPI1_TWI1);
let spim = spim::Spim::new(p.TWISPI1, irq, p.P1_11, p.P1_13, p.P1_12, spi_config);
let cs = Output::new(p.P1_10, Level::High, OutputDrive::Standard);
let reset = Output::new(p.P1_06, Level::High, OutputDrive::Standard);
let dio1 = Input::new(p.P1_15.degrade(), Pull::Down);
let busy = Input::new(p.P1_14.degrade(), Pull::Down);
let antenna_rx = Output::new(p.P1_05, Level::Low, OutputDrive::Standard);
let antenna_tx = Output::new(p.P1_07, Level::Low, OutputDrive::Standard);
match Sx126xRadio::new(spim, cs, reset, antenna_rx, antenna_tx, dio1, busy, false).await {
Ok(r) => r,
Err(err) => {
info!("Sx126xRadio error = {}", err);
return;
}
}
};
// set up for the temperature task
let temperature_irq = interrupt::take!(TEMP);
let temperature = Temp::new(p.TEMP, temperature_irq);
// set the motion detection pin
let pir_pin = Input::new(p.P0_10.degrade(), Pull::Up);
let mut start_indicator = Output::new(p.P1_04, Level::Low, OutputDrive::Standard);
let mut debug_indicator = Output::new(p.P1_03, Level::Low, OutputDrive::Standard);
start_indicator.set_high();
Timer::after(Duration::from_secs(5)).await;
start_indicator.set_low();
match radio.lora.sleep().await {
Ok(()) => info!("Sleep successful"),
Err(err) => info!("Sleep unsuccessful = {}", err),
}
unwrap!(spawner.spawn(temperature_task(temperature, temperature_publisher)));
unwrap!(spawner.spawn(motion_detection_task(pir_pin, motion_detection_publisher)));
loop {
let message = lora_tx_subscriber.next_message_pure().await;
let tx_config = TxConfig {
// 11 byte maximum payload for Bandwidth 125 and SF 10
pw: 20, // up to 20 // 5 ???
rf: RfConfig {
frequency: 903900000, // channel in Hz, not MHz
bandwidth: Bandwidth::_250KHz,
spreading_factor: SpreadingFactor::_10,
coding_rate: CodingRate::_4_8,
},
};
let mut buffer = [TEMPERATURE_UID, 0xffu8, MOTION_UID, 0x00u8];
match message {
Message::Temperature(temperature) => buffer[1] = temperature as u8,
Message::MotionDetected => buffer[3] = 0x01u8,
};
// crypto for text ???
match radio.tx(tx_config, &buffer).await {
Ok(ret_val) => info!("TX ret_val = {}", ret_val),
Err(err) => info!("TX error = {}", err),
}
match radio.lora.sleep().await {
Ok(()) => info!("Sleep successful"),
Err(err) => info!("Sleep unsuccessful = {}", err),
}
debug_indicator.set_high();
Timer::after(Duration::from_secs(5)).await;
debug_indicator.set_low();
}
}