Merge #1177
1177: STD driver needs a reentrant mutex; logic fixed to be reentrancy-safe r=Dirbaio a=ivmarkov ...or to summarize it in another way, the code in the alarm thread loop is written as if - when calling the user-supplied callback - the callback will *never, ever* call `alarm.set_alarm()`. But this happens of course - at least with the generic timer queue implementation. Not sure if that would happen with `embassy-executor`'s own queue, but probably yes? The end result on Linux is that the code deadlocks because when calling the user-supplied callback, the mutex of the alarms is locked, yet - the code in `set_alarm` tries to take the lock again leading to UB. (I suspect on Windows this will crash rather than deadlock but that's a bit irrelevant.) (Note also that calling the user-supplied callback *outside* of the alarms' lock is also NOK, because at that time, the callback and/or context itself might be invalid as well, as the user might had changed it with a new one by calling `set_callback`. Right?) I also had to fix the logic that computed the next timestamp when the alarm should fire; it was running a simple `for {}` loop, not anticipating that the just-traversed alarm might get a new timestamp. The new code is slightly less efficient, in that on each `loop {}` iteration it always starts traversing the alarms from the beginning, whereas in reality only the timestamp of the alarm that just-fired could've changed, but given the complexities introduced by `RefCell`, I don't think we should bother with these micro-optimizations, for just 4 alarms in total. Co-authored-by: ivmarkov <ivan.markov@gmail.com>
This commit is contained in:
commit
ba18656e94
1 changed files with 45 additions and 22 deletions
|
@ -1,10 +1,12 @@
|
|||
use std::cell::UnsafeCell;
|
||||
use std::cell::{RefCell, UnsafeCell};
|
||||
use std::mem::MaybeUninit;
|
||||
use std::sync::{Condvar, Mutex, Once};
|
||||
use std::time::{Duration as StdDuration, Instant as StdInstant};
|
||||
use std::{mem, ptr, thread};
|
||||
|
||||
use atomic_polyfill::{AtomicU8, Ordering};
|
||||
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
|
||||
use embassy_sync::blocking_mutex::Mutex as EmbassyMutex;
|
||||
|
||||
use crate::driver::{AlarmHandle, Driver};
|
||||
|
||||
|
@ -35,7 +37,10 @@ struct TimeDriver {
|
|||
alarm_count: AtomicU8,
|
||||
|
||||
once: Once,
|
||||
alarms: UninitCell<Mutex<[AlarmState; ALARM_COUNT]>>,
|
||||
// The STD Driver implementation requires the alarms' mutex to be reentrant, which the STD Mutex isn't
|
||||
// Fortunately, mutexes based on the `critical-section` crate are reentrant, because the critical sections
|
||||
// themselves are reentrant
|
||||
alarms: UninitCell<EmbassyMutex<CriticalSectionRawMutex, RefCell<[AlarmState; ALARM_COUNT]>>>,
|
||||
zero_instant: UninitCell<StdInstant>,
|
||||
signaler: UninitCell<Signaler>,
|
||||
}
|
||||
|
@ -53,7 +58,8 @@ crate::time_driver_impl!(static DRIVER: TimeDriver = TimeDriver {
|
|||
impl TimeDriver {
|
||||
fn init(&self) {
|
||||
self.once.call_once(|| unsafe {
|
||||
self.alarms.write(Mutex::new([ALARM_NEW; ALARM_COUNT]));
|
||||
self.alarms
|
||||
.write(EmbassyMutex::new(RefCell::new([ALARM_NEW; ALARM_COUNT])));
|
||||
self.zero_instant.write(StdInstant::now());
|
||||
self.signaler.write(Signaler::new());
|
||||
|
||||
|
@ -66,25 +72,37 @@ impl TimeDriver {
|
|||
loop {
|
||||
let now = DRIVER.now();
|
||||
|
||||
let mut next_alarm = u64::MAX;
|
||||
{
|
||||
let alarms = &mut *unsafe { DRIVER.alarms.as_ref() }.lock().unwrap();
|
||||
for alarm in alarms {
|
||||
if alarm.timestamp <= now {
|
||||
alarm.timestamp = u64::MAX;
|
||||
let next_alarm = unsafe { DRIVER.alarms.as_ref() }.lock(|alarms| {
|
||||
loop {
|
||||
let pending = alarms
|
||||
.borrow_mut()
|
||||
.iter_mut()
|
||||
.find(|alarm| alarm.timestamp <= now)
|
||||
.map(|alarm| {
|
||||
alarm.timestamp = u64::MAX;
|
||||
|
||||
// Call after clearing alarm, so the callback can set another alarm.
|
||||
(alarm.callback, alarm.ctx)
|
||||
});
|
||||
|
||||
if let Some((callback, ctx)) = pending {
|
||||
// safety:
|
||||
// - we can ignore the possiblity of `f` being unset (null) because of the safety contract of `allocate_alarm`.
|
||||
// - other than that we only store valid function pointers into alarm.callback
|
||||
let f: fn(*mut ()) = unsafe { mem::transmute(alarm.callback) };
|
||||
f(alarm.ctx);
|
||||
let f: fn(*mut ()) = unsafe { mem::transmute(callback) };
|
||||
f(ctx);
|
||||
} else {
|
||||
next_alarm = next_alarm.min(alarm.timestamp);
|
||||
// No alarm due
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
alarms
|
||||
.borrow()
|
||||
.iter()
|
||||
.map(|alarm| alarm.timestamp)
|
||||
.min()
|
||||
.unwrap_or(u64::MAX)
|
||||
});
|
||||
|
||||
// Ensure we don't overflow
|
||||
let until = zero
|
||||
|
@ -121,18 +139,23 @@ impl Driver for TimeDriver {
|
|||
|
||||
fn set_alarm_callback(&self, alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
|
||||
self.init();
|
||||
let mut alarms = unsafe { self.alarms.as_ref() }.lock().unwrap();
|
||||
let alarm = &mut alarms[alarm.id() as usize];
|
||||
alarm.callback = callback as *const ();
|
||||
alarm.ctx = ctx;
|
||||
unsafe { self.alarms.as_ref() }.lock(|alarms| {
|
||||
let mut alarms = alarms.borrow_mut();
|
||||
let alarm = &mut alarms[alarm.id() as usize];
|
||||
alarm.callback = callback as *const ();
|
||||
alarm.ctx = ctx;
|
||||
});
|
||||
}
|
||||
|
||||
fn set_alarm(&self, alarm: AlarmHandle, timestamp: u64) -> bool {
|
||||
self.init();
|
||||
let mut alarms = unsafe { self.alarms.as_ref() }.lock().unwrap();
|
||||
let alarm = &mut alarms[alarm.id() as usize];
|
||||
alarm.timestamp = timestamp;
|
||||
unsafe { self.signaler.as_ref() }.signal();
|
||||
unsafe { self.alarms.as_ref() }.lock(|alarms| {
|
||||
let mut alarms = alarms.borrow_mut();
|
||||
|
||||
let alarm = &mut alarms[alarm.id() as usize];
|
||||
alarm.timestamp = timestamp;
|
||||
unsafe { self.signaler.as_ref() }.signal();
|
||||
});
|
||||
|
||||
true
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue