Merge pull request #2417 from vasilNnikolov/mutex_rp_example

Add example of pin sharing between tasks
This commit is contained in:
Ulf Lilleengen 2024-01-10 07:25:47 +00:00 committed by GitHub
commit be3c70d455
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 139 additions and 0 deletions

View file

@ -6,6 +6,7 @@
* xref:layer_by_layer.adoc[Bare metal to async]
* xref:runtime.adoc[Executor]
* xref:delaying_a_task.adoc[Delaying a Task]
* xref:sharing_peripherals.adoc[Sharing peripherals between tasks]
* xref:hal.adoc[HAL]
** xref:nrf.adoc[nRF]
** xref:stm32.adoc[STM32]

View file

@ -0,0 +1,78 @@
= Sharing peripherals between tasks
Often times, more than one task needs access to the same resource (pin, communication interface, etc.). The following example shows how to use the on-board LED on a Raspberry Pi Pico board by two tasks simultaneously.
[,rust]
----
use defmt::*;
use embassy_executor::Spawner;
use embassy_rp::gpio;
use embassy_sync::blocking_mutex::raw::ThreadModeRawMutex;
use embassy_sync::mutex::Mutex;
use embassy_time::{Duration, Ticker};
use gpio::{AnyPin, Level, Output};
use {defmt_rtt as _, panic_probe as _};
type LedType = Mutex<ThreadModeRawMutex, Option<Output<'static, AnyPin>>>;
static LED: LedType = Mutex::new(None);
#[embassy_executor::main]
async fn main(spawner: Spawner) {
let p = embassy_rp::init(Default::default());
// set the content of the global LED reference to the real LED pin
let led = Output::new(AnyPin::from(p.PIN_25), Level::High);
// inner scope is so that once the mutex is written to, the MutexGuard is dropped, thus the
// Mutex is released
{
*(LED.lock().await) = Some(led);
}
let dt = 100 * 1_000_000;
let k = 1.003;
unwrap!(spawner.spawn(toggle(&LED, Duration::from_nanos(dt))));
unwrap!(spawner.spawn(toggle_slightly_slower(
&LED,
Duration::from_nanos((dt as f64 * k) as u64)
)));
}
async fn toggle_led(led: &'static LedType, delay: Duration) {
let mut ticker = Ticker::every(delay);
loop {
{
let mut led_unlocked = led.lock().await;
if let Some(pin_ref) = led_unlocked.as_mut() {
pin_ref.toggle();
}
}
ticker.next().await;
}
}
#[embassy_executor::task]
async fn toggle(led: &'static LedType, delay: Duration) {
toggle_led(led, delay).await
}
#[embassy_executor::task]
async fn toggle_slightly_slower(led: &'static LedType, delay: Duration) {
toggle_led(led, delay).await
}
----
The structure facilitating access to the resource is the defined `LedType`.
== Why so complicated
Unwrapping the layers gives insight into why each one is needed.
=== `Mutex<RawMutexType, T>`
The mutex is there so if one task gets the resource first and begins modifying it, all other tasks wanting to write will have to wait (the `led.lock().await` will return immediately if no task has locked the mutex, and will block if it is accessed somewhere else).
=== `Option<T>`
The `LED` variable needs to be defined outside the main task as references accepted by tasks need to be `'static`. However, if it is outside the main task, it cannot be initialised to point to any pin, as the pins themselves are not initialised. Thus, it is set to `None`.
=== `Output<AnyPin>`
To indicate that the pin will be set to an Output. The `AnyPin` could have been `embassy_rp::peripherals::PIN_25`, however this option lets the `toggle_led` function be more generic.

View file

@ -0,0 +1,60 @@
#![no_std]
#![no_main]
/// This example demonstrates how to access a given pin from more than one embassy task
/// The on-board LED is toggled by two tasks with slightly different periods, leading to the
/// apparent duty cycle of the LED increasing, then decreasing, linearly. The phenomenon is similar
/// to interference and the 'beats' you can hear if you play two frequencies close to one another
/// [Link explaining it](https://www.physicsclassroom.com/class/sound/Lesson-3/Interference-and-Beats)
use defmt::*;
use embassy_executor::Spawner;
use embassy_rp::gpio;
use embassy_sync::blocking_mutex::raw::ThreadModeRawMutex;
use embassy_sync::mutex::Mutex;
use embassy_time::{Duration, Ticker};
use gpio::{AnyPin, Level, Output};
use {defmt_rtt as _, panic_probe as _};
type LedType = Mutex<ThreadModeRawMutex, Option<Output<'static, AnyPin>>>;
static LED: LedType = Mutex::new(None);
#[embassy_executor::main]
async fn main(spawner: Spawner) {
let p = embassy_rp::init(Default::default());
// set the content of the global LED reference to the real LED pin
let led = Output::new(AnyPin::from(p.PIN_25), Level::High);
// inner scope is so that once the mutex is written to, the MutexGuard is dropped, thus the
// Mutex is released
{
*(LED.lock().await) = Some(led);
}
let dt = 100 * 1_000_000;
let k = 1.003;
unwrap!(spawner.spawn(toggle(&LED, Duration::from_nanos(dt))));
unwrap!(spawner.spawn(toggle_slightly_slower(
&LED,
Duration::from_nanos((dt as f64 * k) as u64)
)));
}
async fn toggle_led(led: &'static LedType, delay: Duration) {
let mut ticker = Ticker::every(delay);
loop {
{
let mut led_unlocked = led.lock().await;
if let Some(pin_ref) = led_unlocked.as_mut() {
pin_ref.toggle();
}
}
ticker.next().await;
}
}
#[embassy_executor::task]
async fn toggle(led: &'static LedType, delay: Duration) {
toggle_led(led, delay).await
}
#[embassy_executor::task]
async fn toggle_slightly_slower(led: &'static LedType, delay: Duration) {
toggle_led(led, delay).await
}