stm32g4: PLL: Add support for configuring PLL_P and PLL_Q
This commit is contained in:
parent
c822fd46e5
commit
c94ba84892
2 changed files with 184 additions and 38 deletions
|
@ -17,7 +17,7 @@ pub const LSI_FREQ: Hertz = Hertz(32_000);
|
|||
pub enum ClockSrc {
|
||||
HSE(Hertz),
|
||||
HSI16,
|
||||
PLLCLK(PllSrc, PllM, PllN, PllR),
|
||||
PLL,
|
||||
}
|
||||
|
||||
/// AHB prescaler
|
||||
|
@ -60,6 +60,68 @@ impl Into<Pllsrc> for PllSrc {
|
|||
}
|
||||
}
|
||||
|
||||
seq_macro::seq!(P in 2..=31 {
|
||||
/// Output divider for the PLL P output.
|
||||
#[derive(Clone, Copy)]
|
||||
pub enum PllP {
|
||||
// Note: If PLL P is set to 0 the PLLP bit controls the output division. There does not seem to
|
||||
// a good reason to do this so the API does not support it.
|
||||
// Div1 is invalid
|
||||
#(
|
||||
Div~P,
|
||||
)*
|
||||
}
|
||||
|
||||
impl From<PllP> for u8 {
|
||||
/// Returns the register value for the P output divider.
|
||||
fn from(val: PllP) -> u8 {
|
||||
match val {
|
||||
#(
|
||||
PllP::Div~P => P,
|
||||
)*
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
impl PllP {
|
||||
/// Returns the numeric value of the P output divider.
|
||||
pub fn to_div(self) -> u32 {
|
||||
let val: u8 = self.into();
|
||||
val as u32
|
||||
}
|
||||
}
|
||||
|
||||
/// Output divider for the PLL Q output.
|
||||
#[derive(Clone, Copy)]
|
||||
pub enum PllQ {
|
||||
Div2,
|
||||
Div4,
|
||||
Div6,
|
||||
Div8,
|
||||
}
|
||||
|
||||
impl PllQ {
|
||||
/// Returns the numeric value of the Q output divider.
|
||||
pub fn to_div(self) -> u32 {
|
||||
let val: u8 = self.into();
|
||||
(val as u32 + 1) * 2
|
||||
}
|
||||
}
|
||||
|
||||
impl From<PllQ> for u8 {
|
||||
/// Returns the register value for the Q output divider.
|
||||
fn from(val: PllQ) -> u8 {
|
||||
match val {
|
||||
PllQ::Div2 => 0b00,
|
||||
PllQ::Div4 => 0b01,
|
||||
PllQ::Div6 => 0b10,
|
||||
PllQ::Div8 => 0b11,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Output divider for the PLL R output.
|
||||
#[derive(Clone, Copy)]
|
||||
pub enum PllR {
|
||||
Div2,
|
||||
|
@ -69,6 +131,7 @@ pub enum PllR {
|
|||
}
|
||||
|
||||
impl PllR {
|
||||
/// Returns the numeric value of the R output divider.
|
||||
pub fn to_div(self) -> u32 {
|
||||
let val: u8 = self.into();
|
||||
(val as u32 + 1) * 2
|
||||
|
@ -76,6 +139,7 @@ impl PllR {
|
|||
}
|
||||
|
||||
impl From<PllR> for u8 {
|
||||
/// Returns the register value for the R output divider.
|
||||
fn from(val: PllR) -> u8 {
|
||||
match val {
|
||||
PllR::Div2 => 0b00,
|
||||
|
@ -87,6 +151,7 @@ impl From<PllR> for u8 {
|
|||
}
|
||||
|
||||
seq_macro::seq!(N in 8..=127 {
|
||||
/// Multiplication factor for the PLL VCO input clock.
|
||||
#[derive(Clone, Copy)]
|
||||
pub enum PllN {
|
||||
#(
|
||||
|
@ -95,6 +160,7 @@ seq_macro::seq!(N in 8..=127 {
|
|||
}
|
||||
|
||||
impl From<PllN> for u8 {
|
||||
/// Returns the register value for the N multiplication factor.
|
||||
fn from(val: PllN) -> u8 {
|
||||
match val {
|
||||
#(
|
||||
|
@ -105,6 +171,7 @@ seq_macro::seq!(N in 8..=127 {
|
|||
}
|
||||
|
||||
impl PllN {
|
||||
/// Returns the numeric value of the N multiplication factor.
|
||||
pub fn to_mul(self) -> u32 {
|
||||
match self {
|
||||
#(
|
||||
|
@ -115,7 +182,7 @@ seq_macro::seq!(N in 8..=127 {
|
|||
}
|
||||
});
|
||||
|
||||
// Pre-division
|
||||
/// PLL Pre-division. This must be set such that the PLL input is between 2.66 MHz and 16 MHz.
|
||||
#[derive(Copy, Clone)]
|
||||
pub enum PllM {
|
||||
Div1,
|
||||
|
@ -137,6 +204,7 @@ pub enum PllM {
|
|||
}
|
||||
|
||||
impl PllM {
|
||||
/// Returns the numeric value of the M pre-division.
|
||||
pub fn to_div(self) -> u32 {
|
||||
let val: u8 = self.into();
|
||||
val as u32 + 1
|
||||
|
@ -144,6 +212,7 @@ impl PllM {
|
|||
}
|
||||
|
||||
impl From<PllM> for u8 {
|
||||
/// Returns the register value for the M pre-division.
|
||||
fn from(val: PllM) -> u8 {
|
||||
match val {
|
||||
PllM::Div1 => 0b0000,
|
||||
|
@ -166,6 +235,31 @@ impl From<PllM> for u8 {
|
|||
}
|
||||
}
|
||||
|
||||
/// PLL Configuration
|
||||
///
|
||||
/// Use this struct to configure the PLL source, input frequency, multiplication factor, and output
|
||||
/// dividers. Be sure to keep check the datasheet for your specific part for the appropriate
|
||||
/// frequency ranges for each of these settings.
|
||||
pub struct Pll {
|
||||
/// PLL Source clock selection.
|
||||
pub source: PllSrc,
|
||||
|
||||
/// PLL pre-divider
|
||||
pub prediv_m: PllM,
|
||||
|
||||
/// PLL multiplication factor for VCO
|
||||
pub mul_n: PllN,
|
||||
|
||||
/// PLL division factor for P clock (ADC Clock)
|
||||
pub div_p: Option<PllP>,
|
||||
|
||||
/// PLL division factor for Q clock (USB, I2S23, SAI1, FDCAN, QSPI)
|
||||
pub div_q: Option<PllQ>,
|
||||
|
||||
/// PLL division factor for R clock (SYSCLK)
|
||||
pub div_r: Option<PllR>,
|
||||
}
|
||||
|
||||
impl AHBPrescaler {
|
||||
const fn div(self) -> u32 {
|
||||
match self {
|
||||
|
@ -229,6 +323,9 @@ pub struct Config {
|
|||
pub apb1_pre: APBPrescaler,
|
||||
pub apb2_pre: APBPrescaler,
|
||||
pub low_power_run: bool,
|
||||
/// Iff PLL is requested as the main clock source in the `mux` field then the PLL configuration
|
||||
/// MUST turn on the PLLR output.
|
||||
pub pll: Option<Pll>,
|
||||
}
|
||||
|
||||
impl Default for Config {
|
||||
|
@ -240,11 +337,80 @@ impl Default for Config {
|
|||
apb1_pre: APBPrescaler::NotDivided,
|
||||
apb2_pre: APBPrescaler::NotDivided,
|
||||
low_power_run: false,
|
||||
pll: None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct PllFreq {
|
||||
pub pll_p: Option<Hertz>,
|
||||
pub pll_q: Option<Hertz>,
|
||||
pub pll_r: Option<Hertz>,
|
||||
}
|
||||
|
||||
pub(crate) unsafe fn init(config: Config) {
|
||||
let pll_freq = config.pll.map(|pll_config| {
|
||||
let src_freq = match pll_config.source {
|
||||
PllSrc::HSI16 => {
|
||||
RCC.cr().write(|w| w.set_hsion(true));
|
||||
while !RCC.cr().read().hsirdy() {}
|
||||
|
||||
HSI_FREQ.0
|
||||
}
|
||||
PllSrc::HSE(freq) => {
|
||||
RCC.cr().write(|w| w.set_hseon(true));
|
||||
while !RCC.cr().read().hserdy() {}
|
||||
freq.0
|
||||
}
|
||||
};
|
||||
|
||||
// Disable PLL before configuration
|
||||
RCC.cr().modify(|w| w.set_pllon(false));
|
||||
while RCC.cr().read().pllrdy() {}
|
||||
|
||||
let internal_freq = src_freq / pll_config.prediv_m.to_div() * pll_config.mul_n.to_mul();
|
||||
|
||||
RCC.pllcfgr().write(|w| {
|
||||
w.set_plln(pll_config.mul_n.into());
|
||||
w.set_pllm(pll_config.prediv_m.into());
|
||||
w.set_pllsrc(pll_config.source.into());
|
||||
});
|
||||
|
||||
let pll_p_freq = pll_config.div_p.map(|div_p| {
|
||||
RCC.pllcfgr().modify(|w| {
|
||||
w.set_pllpdiv(div_p.into());
|
||||
w.set_pllpen(true);
|
||||
});
|
||||
Hertz(internal_freq / div_p.to_div())
|
||||
});
|
||||
|
||||
let pll_q_freq = pll_config.div_q.map(|div_q| {
|
||||
RCC.pllcfgr().modify(|w| {
|
||||
w.set_pllq(div_q.into());
|
||||
w.set_pllqen(true);
|
||||
});
|
||||
Hertz(internal_freq / div_q.to_div())
|
||||
});
|
||||
|
||||
let pll_r_freq = pll_config.div_r.map(|div_r| {
|
||||
RCC.pllcfgr().modify(|w| {
|
||||
w.set_pllr(div_r.into());
|
||||
w.set_pllren(true);
|
||||
});
|
||||
Hertz(internal_freq / div_r.to_div())
|
||||
});
|
||||
|
||||
// Enable the PLL
|
||||
RCC.cr().modify(|w| w.set_pllon(true));
|
||||
while !RCC.cr().read().pllrdy() {}
|
||||
|
||||
PllFreq {
|
||||
pll_p: pll_p_freq,
|
||||
pll_q: pll_q_freq,
|
||||
pll_r: pll_r_freq,
|
||||
}
|
||||
});
|
||||
|
||||
let (sys_clk, sw) = match config.mux {
|
||||
ClockSrc::HSI16 => {
|
||||
// Enable HSI16
|
||||
|
@ -260,29 +426,12 @@ pub(crate) unsafe fn init(config: Config) {
|
|||
|
||||
(freq.0, Sw::HSE)
|
||||
}
|
||||
ClockSrc::PLLCLK(src, prediv, mul, div) => {
|
||||
let src_freq = match src {
|
||||
PllSrc::HSI16 => {
|
||||
// Enable HSI16 as clock source for PLL
|
||||
RCC.cr().write(|w| w.set_hsion(true));
|
||||
while !RCC.cr().read().hsirdy() {}
|
||||
ClockSrc::PLL => {
|
||||
assert!(pll_freq.is_some());
|
||||
assert!(pll_freq.as_ref().unwrap().pll_r.is_some());
|
||||
|
||||
HSI_FREQ.0
|
||||
}
|
||||
PllSrc::HSE(freq) => {
|
||||
// Enable HSE as clock source for PLL
|
||||
RCC.cr().write(|w| w.set_hseon(true));
|
||||
while !RCC.cr().read().hserdy() {}
|
||||
let freq = pll_freq.unwrap().pll_r.unwrap().0;
|
||||
|
||||
freq.0
|
||||
}
|
||||
};
|
||||
|
||||
// Make sure PLL is disabled while we configure it
|
||||
RCC.cr().modify(|w| w.set_pllon(false));
|
||||
while RCC.cr().read().pllrdy() {}
|
||||
|
||||
let freq = src_freq / prediv.to_div() * mul.to_mul() / div.to_div();
|
||||
assert!(freq <= 170_000_000);
|
||||
|
||||
if freq >= 150_000_000 {
|
||||
|
@ -316,18 +465,6 @@ pub(crate) unsafe fn init(config: Config) {
|
|||
}
|
||||
}
|
||||
|
||||
RCC.pllcfgr().write(move |w| {
|
||||
w.set_plln(mul.into());
|
||||
w.set_pllm(prediv.into());
|
||||
w.set_pllr(div.into());
|
||||
w.set_pllsrc(src.into());
|
||||
});
|
||||
|
||||
// Enable PLL
|
||||
RCC.cr().modify(|w| w.set_pllon(true));
|
||||
while !RCC.cr().read().pllrdy() {}
|
||||
RCC.pllcfgr().modify(|w| w.set_pllren(true));
|
||||
|
||||
(freq, Sw::PLLRCLK)
|
||||
}
|
||||
};
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
|
||||
use defmt::*;
|
||||
use embassy_executor::Spawner;
|
||||
use embassy_stm32::rcc::{ClockSrc, PllM, PllN, PllR, PllSrc};
|
||||
use embassy_stm32::rcc::{ClockSrc, Pll, PllM, PllN, PllR, PllSrc};
|
||||
use embassy_stm32::Config;
|
||||
use embassy_time::{Duration, Timer};
|
||||
use {defmt_rtt as _, panic_probe as _};
|
||||
|
@ -13,8 +13,17 @@ use {defmt_rtt as _, panic_probe as _};
|
|||
async fn main(_spawner: Spawner) {
|
||||
let mut config = Config::default();
|
||||
|
||||
// Configure PLL to max frequency of 170 MHz
|
||||
config.rcc.mux = ClockSrc::PLLCLK(PllSrc::HSI16, PllM::Div4, PllN::Mul85, PllR::Div2);
|
||||
config.rcc.pll = Some(Pll {
|
||||
source: PllSrc::HSI16,
|
||||
prediv_m: PllM::Div4,
|
||||
mul_n: PllN::Mul85,
|
||||
div_p: None,
|
||||
div_q: None,
|
||||
// Main system clock at 170 MHz
|
||||
div_r: Some(PllR::Div2),
|
||||
});
|
||||
|
||||
config.rcc.mux = ClockSrc::PLL;
|
||||
|
||||
let _p = embassy_stm32::init(config);
|
||||
info!("Hello World!");
|
||||
|
|
Loading…
Reference in a new issue