Preliminary DMA support for RP2040

This commit is contained in:
Mathias 2022-08-18 19:39:13 +02:00
parent 0f74f870b0
commit d35a1c9790
2 changed files with 260 additions and 80 deletions

View file

@ -1,39 +1,71 @@
use core::pin::Pin;
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::{Context, Poll};
use embassy_hal_common::impl_peripheral;
use embassy_hal_common::{impl_peripheral, into_ref, Peripheral, PeripheralRef};
use futures::Future;
use crate::pac::dma::vals;
use crate::{pac, peripherals};
pub struct Dma<T: Channel> {
_inner: T,
pub fn copy<'a, C: Channel, W: Word>(ch: impl Peripheral<P = C> + 'a, from: &[W], to: &mut [W]) -> Transfer<'a, C> {
assert!(from.len() == to.len());
into_ref!(ch);
unsafe {
let p = ch.regs();
p.read_addr().write_value(from.as_ptr() as u32);
p.write_addr().write_value(to.as_mut_ptr() as u32);
p.trans_count().write_value(from.len() as u32);
compiler_fence(Ordering::SeqCst);
p.ctrl_trig().write(|w| {
w.set_data_size(W::size());
w.set_incr_read(true);
w.set_incr_write(true);
w.set_chain_to(ch.number());
w.set_en(true);
});
// FIXME:
while p.ctrl_trig().read().busy() {}
compiler_fence(Ordering::SeqCst);
}
Transfer::new(ch)
}
impl<T: Channel> Dma<T> {
pub fn copy(inner: T, from: &[u32], to: &mut [u32]) {
assert!(from.len() == to.len());
pub(crate) struct Transfer<'a, C: Channel> {
channel: PeripheralRef<'a, C>,
}
unsafe {
let p = inner.regs();
impl<'a, C: Channel> Transfer<'a, C> {
pub(crate) fn new(channel: impl Peripheral<P = C> + 'a) -> Self {
into_ref!(channel);
Self { channel }
}
}
p.read_addr().write_value(from.as_ptr() as u32);
p.write_addr().write_value(to.as_mut_ptr() as u32);
p.trans_count().write_value(from.len() as u32);
impl<'a, C: Channel> Drop for Transfer<'a, C> {
fn drop(&mut self) {
// self.channel.request_stop();
// while self.channel.is_running() {}
}
}
compiler_fence(Ordering::SeqCst);
p.ctrl_trig().write(|w| {
w.set_data_size(vals::DataSize::SIZE_WORD);
w.set_incr_read(true);
w.set_incr_write(true);
w.set_chain_to(inner.number());
w.set_en(true);
});
while p.ctrl_trig().read().busy() {}
compiler_fence(Ordering::SeqCst);
}
impl<'a, C: Channel> Unpin for Transfer<'a, C> {}
impl<'a, C: Channel> Future for Transfer<'a, C> {
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// self.channel.set_waker(cx.waker());
// if self.channel.is_running() {
// Poll::Pending
// } else {
Poll::Ready(())
// }
}
}
@ -42,38 +74,77 @@ pub struct NoDma;
impl_peripheral!(NoDma);
mod sealed {
use super::*;
pub trait Channel {}
pub trait Channel {
fn number(&self) -> u8;
pub trait Word {}
}
fn regs(&self) -> pac::dma::Channel {
pac::DMA.ch(self.number() as _)
pub trait Channel: Peripheral<P = Self> + sealed::Channel + Into<AnyChannel> + Sized + 'static {
fn number(&self) -> u8;
fn regs(&self) -> pac::dma::Channel {
pac::DMA.ch(self.number() as _)
}
fn degrade(self) -> AnyChannel {
AnyChannel {
number: self.number(),
}
}
}
pub trait Channel: sealed::Channel {}
pub trait Word: sealed::Word {
fn size() -> vals::DataSize;
}
impl sealed::Word for u8 {}
impl Word for u8 {
fn size() -> vals::DataSize {
vals::DataSize::SIZE_BYTE
}
}
impl sealed::Word for u16 {}
impl Word for u16 {
fn size() -> vals::DataSize {
vals::DataSize::SIZE_HALFWORD
}
}
impl sealed::Word for u32 {}
impl Word for u32 {
fn size() -> vals::DataSize {
vals::DataSize::SIZE_WORD
}
}
pub struct AnyChannel {
number: u8,
}
impl Channel for AnyChannel {}
impl sealed::Channel for AnyChannel {
impl_peripheral!(AnyChannel);
impl sealed::Channel for AnyChannel {}
impl Channel for AnyChannel {
fn number(&self) -> u8 {
self.number
}
}
macro_rules! channel {
($type:ident, $num:expr) => {
impl Channel for peripherals::$type {}
impl sealed::Channel for peripherals::$type {
($name:ident, $num:expr) => {
impl sealed::Channel for peripherals::$name {}
impl Channel for peripherals::$name {
fn number(&self) -> u8 {
$num
}
}
impl From<peripherals::$name> for crate::dma::AnyChannel {
fn from(val: peripherals::$name) -> Self {
crate::dma::Channel::degrade(val)
}
}
};
}

View file

@ -2,6 +2,7 @@ use core::marker::PhantomData;
use embassy_hal_common::{into_ref, PeripheralRef};
use crate::dma::{AnyChannel, Channel};
use crate::gpio::sealed::Pin;
use crate::gpio::AnyPin;
use crate::{pac, peripherals, Peripheral};
@ -76,26 +77,27 @@ pub enum Error {
Framing,
}
pub struct Uart<'d, T: Instance> {
tx: UartTx<'d, T>,
rx: UartRx<'d, T>,
pub struct Uart<'d, T: Instance, M: Mode> {
tx: UartTx<'d, T, M>,
rx: UartRx<'d, T, M>,
}
pub struct UartTx<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
pub struct UartTx<'d, T: Instance, M: Mode> {
tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
phantom: PhantomData<(&'d mut T, M)>,
}
pub struct UartRx<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
pub struct UartRx<'d, T: Instance, M: Mode> {
rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
phantom: PhantomData<(&'d mut T, M)>,
}
impl<'d, T: Instance> UartTx<'d, T> {
fn new() -> Self {
Self { phantom: PhantomData }
}
pub async fn write(&mut self, _buffer: &[u8]) -> Result<(), Error> {
todo!()
impl<'d, T: Instance, M: Mode> UartTx<'d, T, M> {
fn new(tx_dma: Option<PeripheralRef<'d, AnyChannel>>) -> Self {
Self {
tx_dma,
phantom: PhantomData,
}
}
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
@ -116,13 +118,29 @@ impl<'d, T: Instance> UartTx<'d, T> {
}
}
impl<'d, T: Instance> UartRx<'d, T> {
fn new() -> Self {
Self { phantom: PhantomData }
impl<'d, T: Instance> UartTx<'d, T, Async> {
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
if let Some(ch) = &mut self.tx_dma {
unsafe {
T::regs().uartdmacr().modify(|reg| {
reg.set_txdmae(true);
});
}
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
let transfer = crate::dma::copy(ch, buffer, unsafe { T::regs().uartdr().ptr() });
transfer.await;
}
Ok(())
}
}
pub async fn read(&mut self, _buffer: &mut [u8]) -> Result<(), Error> {
todo!();
impl<'d, T: Instance, M: Mode> UartRx<'d, T, M> {
fn new(rx_dma: Option<PeripheralRef<'d, AnyChannel>>) -> Self {
Self {
rx_dma,
phantom: PhantomData,
}
}
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
@ -150,25 +168,42 @@ impl<'d, T: Instance> UartRx<'d, T> {
}
}
impl<'d, T: Instance> Uart<'d, T> {
impl<'d, T: Instance> UartRx<'d, T, Async> {
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
if let Some(ch) = &mut self.rx_dma {
unsafe {
T::regs().uartdmacr().modify(|reg| {
reg.set_rxdmae(true);
});
}
// If we don't assign future to a variable, the data register pointer
// is held across an await and makes the future non-Send.
let transfer = crate::dma::copy(ch, unsafe { T::regs().uartdr().ptr() }, buffer);
transfer.await;
}
Ok(())
}
}
impl<'d, T: Instance> Uart<'d, T, Blocking> {
/// Create a new UART without hardware flow control
pub fn new(
pub fn new_blocking(
uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
config: Config,
) -> Self {
into_ref!(tx, rx);
Self::new_inner(uart, rx.map_into(), tx.map_into(), None, None, config)
Self::new_inner(uart, rx.map_into(), tx.map_into(), None, None, None, None, config)
}
/// Create a new UART with hardware flow control (RTS/CTS)
pub fn new_with_rtscts(
pub fn new_with_rtscts_blocking(
uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
config: Config,
) -> Self {
into_ref!(tx, rx, cts, rts);
@ -176,18 +211,72 @@ impl<'d, T: Instance> Uart<'d, T> {
uart,
rx.map_into(),
tx.map_into(),
Some(cts.map_into()),
Some(rts.map_into()),
Some(cts.map_into()),
None,
None,
config,
)
}
}
impl<'d, T: Instance> Uart<'d, T, Async> {
/// Create a new DMA enabled UART without hardware flow control
pub fn new(
uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx_dma: impl Peripheral<P = impl Channel> + 'd,
rx_dma: impl Peripheral<P = impl Channel> + 'd,
config: Config,
) -> Self {
into_ref!(tx, rx, tx_dma, rx_dma);
Self::new_inner(
uart,
rx.map_into(),
tx.map_into(),
None,
None,
Some(tx_dma.map_into()),
Some(rx_dma.map_into()),
config,
)
}
/// Create a new DMA enabled UART with hardware flow control (RTS/CTS)
pub fn new_with_rtscts(
uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
tx_dma: impl Peripheral<P = impl Channel> + 'd,
rx_dma: impl Peripheral<P = impl Channel> + 'd,
config: Config,
) -> Self {
into_ref!(tx, rx, cts, rts, tx_dma, rx_dma);
Self::new_inner(
uart,
rx.map_into(),
tx.map_into(),
Some(rts.map_into()),
Some(cts.map_into()),
Some(tx_dma.map_into()),
Some(rx_dma.map_into()),
config,
)
}
}
impl<'d, T: Instance, M: Mode> Uart<'d, T, M> {
fn new_inner(
_uart: impl Peripheral<P = T> + 'd,
tx: PeripheralRef<'d, AnyPin>,
rx: PeripheralRef<'d, AnyPin>,
cts: Option<PeripheralRef<'d, AnyPin>>,
rts: Option<PeripheralRef<'d, AnyPin>>,
cts: Option<PeripheralRef<'d, AnyPin>>,
tx_dma: Option<PeripheralRef<'d, AnyChannel>>,
rx_dma: Option<PeripheralRef<'d, AnyChannel>>,
config: Config,
) -> Self {
into_ref!(_uart);
@ -246,15 +335,13 @@ impl<'d, T: Instance> Uart<'d, T> {
}
Self {
tx: UartTx::new(),
rx: UartRx::new(),
tx: UartTx::new(tx_dma),
rx: UartRx::new(rx_dma),
}
}
}
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.write(buffer).await
}
impl<'d, T: Instance, M: Mode> Uart<'d, T, M> {
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.blocking_write(buffer)
}
@ -263,26 +350,31 @@ impl<'d, T: Instance> Uart<'d, T> {
self.tx.blocking_flush()
}
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.read(buffer).await
}
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.blocking_read(buffer)
}
/// Split the Uart into a transmitter and receiver, which is
/// particuarly useful when having two tasks correlating to
/// transmitting and receiving.
pub fn split(self) -> (UartTx<'d, T>, UartRx<'d, T>) {
/// Split the Uart into a transmitter and receiver, which is particuarly
/// useful when having two tasks correlating to transmitting and receiving.
pub fn split(self) -> (UartTx<'d, T, M>, UartRx<'d, T, M>) {
(self.tx, self.rx)
}
}
impl<'d, T: Instance> Uart<'d, T, Async> {
pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
self.tx.write(buffer).await
}
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.read(buffer).await
}
}
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::serial::Read<u8> for UartRx<'d, T> {
impl<'d, T: Instance, M: Mode> embedded_hal_02::serial::Read<u8> for UartRx<'d, T, M> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
let r = T::regs();
@ -306,7 +398,7 @@ mod eh02 {
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, T> {
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, T, M> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
@ -316,14 +408,14 @@ mod eh02 {
}
}
impl<'d, T: Instance> embedded_hal_02::serial::Read<u8> for Uart<'d, T> {
impl<'d, T: Instance, M: Mode> embedded_hal_02::serial::Read<u8> for Uart<'d, T, M> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for Uart<'d, T> {
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::serial::Write<u8> for Uart<'d, T, M> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
@ -419,6 +511,8 @@ cfg_if::cfg_if! {
mod sealed {
use super::*;
pub trait Mode {}
pub trait Instance {
fn regs() -> pac::uart::Uart;
}
@ -428,6 +522,21 @@ mod sealed {
pub trait RtsPin<T: Instance> {}
}
pub trait Mode: sealed::Mode {}
macro_rules! impl_mode {
($name:ident) => {
impl sealed::Mode for $name {}
impl Mode for $name {}
};
}
pub struct Blocking;
pub struct Async;
impl_mode!(Blocking);
impl_mode!(Async);
pub trait Instance: sealed::Instance {}
macro_rules! impl_instance {