Implement remaining logic for blocking UART. async is still todo, awaiting DMA

This commit is contained in:
Mathias 2022-08-18 10:14:37 +02:00
parent 16d0ae7678
commit d52c7ded49
3 changed files with 371 additions and 38 deletions

View file

@ -36,6 +36,8 @@ embassy-macros = { version = "0.1.0", path = "../embassy-macros", features = ["r
atomic-polyfill = "0.1.5" atomic-polyfill = "0.1.5"
defmt = { version = "0.3", optional = true } defmt = { version = "0.3", optional = true }
log = { version = "0.4.14", optional = true } log = { version = "0.4.14", optional = true }
nb = "1.0.0"
cfg-if = "1.0.0"
cortex-m-rt = ">=0.6.15,<0.8" cortex-m-rt = ">=0.6.15,<0.8"
cortex-m = "0.7.3" cortex-m = "0.7.3"
critical-section = "0.2.5" critical-section = "0.2.5"

View file

@ -1,5 +1,7 @@
use core::sync::atomic::{compiler_fence, Ordering}; use core::sync::atomic::{compiler_fence, Ordering};
use embassy_hal_common::impl_peripheral;
use crate::pac::dma::vals; use crate::pac::dma::vals;
use crate::{pac, peripherals}; use crate::{pac, peripherals};
@ -35,6 +37,10 @@ impl<T: Channel> Dma<T> {
} }
} }
pub struct NoDma;
impl_peripheral!(NoDma);
mod sealed { mod sealed {
use super::*; use super::*;

View file

@ -1,42 +1,199 @@
use embassy_hal_common::{into_ref, PeripheralRef}; use core::marker::PhantomData;
use gpio::Pin;
use crate::{gpio, pac, peripherals, Peripheral}; use embassy_hal_common::{into_ref, PeripheralRef};
use crate::gpio::sealed::Pin;
use crate::gpio::AnyPin;
use crate::{pac, peripherals, Peripheral};
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum DataBits {
DataBits5,
DataBits6,
DataBits7,
DataBits8,
}
impl DataBits {
fn bits(&self) -> u8 {
match self {
Self::DataBits5 => 0b00,
Self::DataBits6 => 0b01,
Self::DataBits7 => 0b10,
Self::DataBits8 => 0b11,
}
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum Parity {
ParityNone,
ParityEven,
ParityOdd,
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum StopBits {
#[doc = "1 stop bit"]
STOP1,
#[doc = "2 stop bits"]
STOP2,
}
#[non_exhaustive] #[non_exhaustive]
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Config { pub struct Config {
pub baudrate: u32, pub baudrate: u32,
pub data_bits: u8, pub data_bits: DataBits,
pub stop_bits: u8, pub stop_bits: StopBits,
pub parity: Parity,
} }
impl Default for Config { impl Default for Config {
fn default() -> Self { fn default() -> Self {
Self { Self {
baudrate: 115200, baudrate: 115200,
data_bits: 8, data_bits: DataBits::DataBits8,
stop_bits: 1, stop_bits: StopBits::STOP1,
parity: Parity::ParityNone,
} }
} }
} }
/// Serial error
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
/// Triggered when the FIFO (or shift-register) is overflowed.
Overrun,
/// Triggered when a break is received
Break,
/// Triggered when there is a parity mismatch between what's received and
/// our settings.
Parity,
/// Triggered when the received character didn't have a valid stop bit.
Framing,
}
pub struct Uart<'d, T: Instance> { pub struct Uart<'d, T: Instance> {
inner: PeripheralRef<'d, T>, tx: UartTx<'d, T>,
rx: UartRx<'d, T>,
}
pub struct UartTx<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
}
pub struct UartRx<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: Instance> UartTx<'d, T> {
fn new() -> Self {
Self { phantom: PhantomData }
}
pub async fn write(&mut self, _buffer: &[u8]) -> Result<(), Error> {
todo!()
}
pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
let r = T::regs();
unsafe {
for &b in buffer {
while r.uartfr().read().txff() {}
r.uartdr().write(|w| w.set_data(b));
}
}
Ok(())
}
pub fn blocking_flush(&mut self) -> Result<(), Error> {
let r = T::regs();
unsafe { while r.uartfr().read().txff() {} }
Ok(())
}
}
impl<'d, T: Instance> UartRx<'d, T> {
fn new() -> Self {
Self { phantom: PhantomData }
}
pub async fn read(&mut self, _buffer: &mut [u8]) -> Result<(), Error> {
todo!();
}
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
let r = T::regs();
unsafe {
for b in buffer {
*b = loop {
let dr = r.uartdr().read();
if dr.oe() {
return Err(Error::Overrun);
} else if dr.be() {
return Err(Error::Break);
} else if dr.pe() {
return Err(Error::Parity);
} else if dr.fe() {
return Err(Error::Framing);
} else if dr.fe() {
break dr.data();
}
};
}
}
Ok(())
}
} }
impl<'d, T: Instance> Uart<'d, T> { impl<'d, T: Instance> Uart<'d, T> {
/// Create a new UARTE without hardware flow control
pub fn new( pub fn new(
inner: impl Peripheral<P = T> + 'd, uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
config: Config,
) -> Self {
into_ref!(tx, rx);
Self::new_inner(uart, rx.map_into(), tx.map_into(), None, None, config)
}
/// Create a new UART with hardware flow control (RTS/CTS)
pub fn new_with_rtscts(
uart: impl Peripheral<P = T> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd, tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd, rx: impl Peripheral<P = impl RxPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd, cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd, rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
config: Config, config: Config,
) -> Self { ) -> Self {
into_ref!(inner, tx, rx, cts, rts); into_ref!(tx, rx, cts, rts);
Self::new_inner(
uart,
rx.map_into(),
tx.map_into(),
Some(cts.map_into()),
Some(rts.map_into()),
config,
)
}
fn new_inner(
_uart: impl Peripheral<P = T> + 'd,
tx: PeripheralRef<'d, AnyPin>,
rx: PeripheralRef<'d, AnyPin>,
cts: Option<PeripheralRef<'d, AnyPin>>,
rts: Option<PeripheralRef<'d, AnyPin>>,
config: Config,
) -> Self {
into_ref!(_uart);
unsafe { unsafe {
let p = inner.regs(); let r = T::regs();
let clk_base = crate::clocks::clk_peri_freq(); let clk_base = crate::clocks::clk_peri_freq();
@ -53,49 +210,217 @@ impl<'d, T: Instance> Uart<'d, T> {
} }
// Load PL011's baud divisor registers // Load PL011's baud divisor registers
p.uartibrd().write_value(pac::uart::regs::Uartibrd(baud_ibrd)); r.uartibrd().write_value(pac::uart::regs::Uartibrd(baud_ibrd));
p.uartfbrd().write_value(pac::uart::regs::Uartfbrd(baud_fbrd)); r.uartfbrd().write_value(pac::uart::regs::Uartfbrd(baud_fbrd));
p.uartlcr_h().write(|w| { let (pen, eps) = match config.parity {
w.set_wlen(config.data_bits - 5); Parity::ParityNone => (false, false),
w.set_stp2(config.stop_bits == 2); Parity::ParityEven => (true, true),
w.set_pen(false); Parity::ParityOdd => (true, false),
w.set_eps(false); };
r.uartlcr_h().write(|w| {
w.set_wlen(config.data_bits.bits());
w.set_stp2(config.stop_bits == StopBits::STOP2);
w.set_pen(pen);
w.set_eps(eps);
w.set_fen(true); w.set_fen(true);
}); });
p.uartcr().write(|w| { r.uartcr().write(|w| {
w.set_uarten(true); w.set_uarten(true);
w.set_rxe(true); w.set_rxe(true);
w.set_txe(true); w.set_txe(true);
w.set_ctsen(cts.is_some());
w.set_rtsen(rts.is_some());
}); });
tx.io().ctrl().write(|w| w.set_funcsel(2)); tx.io().ctrl().write(|w| w.set_funcsel(2));
rx.io().ctrl().write(|w| w.set_funcsel(2)); rx.io().ctrl().write(|w| w.set_funcsel(2));
cts.io().ctrl().write(|w| w.set_funcsel(2)); if let Some(pin) = &cts {
rts.io().ctrl().write(|w| w.set_funcsel(2)); pin.io().ctrl().write(|w| w.set_funcsel(2));
}
if let Some(pin) = &rts {
pin.io().ctrl().write(|w| w.set_funcsel(2));
}
}
Self {
tx: UartTx::new(),
rx: UartRx::new(),
} }
Self { inner }
} }
pub fn send(&mut self, data: &[u8]) { pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> {
unsafe { self.tx.write(buffer).await
let p = self.inner.regs(); }
for &byte in data { pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> {
if !p.uartfr().read().txff() { self.tx.blocking_write(buffer)
p.uartdr().write(|w| w.set_data(byte)); }
pub fn blocking_flush(&mut self) -> Result<(), Error> {
self.tx.blocking_flush()
}
pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.read(buffer).await
}
pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> {
self.rx.blocking_read(buffer)
}
/// Split the Uart into a transmitter and receiver, which is
/// particuarly useful when having two tasks correlating to
/// transmitting and receiving.
pub fn split(self) -> (UartTx<'d, T>, UartRx<'d, T>) {
(self.tx, self.rx)
}
}
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::serial::Read<u8> for UartRx<'d, T> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
let r = T::regs();
unsafe {
let dr = r.uartdr().read();
if dr.oe() {
Err(nb::Error::Other(Error::Overrun))
} else if dr.be() {
Err(nb::Error::Other(Error::Break))
} else if dr.pe() {
Err(nb::Error::Other(Error::Parity))
} else if dr.fe() {
Err(nb::Error::Other(Error::Framing))
} else if dr.fe() {
Ok(dr.data())
} else {
Err(nb::Error::WouldBlock)
} }
} }
} }
} }
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for UartTx<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
impl<'d, T: Instance> embedded_hal_02::serial::Read<u8> for Uart<'d, T> {
type Error = Error;
fn read(&mut self) -> Result<u8, nb::Error<Self::Error>> {
embedded_hal_02::serial::Read::read(&mut self.rx)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::serial::Write<u8> for Uart<'d, T> {
type Error = Error;
fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(buffer)
}
fn bflush(&mut self) -> Result<(), Self::Error> {
self.blocking_flush()
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::serial::Error for Error {
fn kind(&self) -> embedded_hal_1::serial::ErrorKind {
match *self {
Self::Framing => embedded_hal_1::serial::ErrorKind::FrameFormat,
Self::Break => embedded_hal_1::serial::ErrorKind::Other,
Self::Overrun => embedded_hal_1::serial::ErrorKind::Overrun,
Self::Parity => embedded_hal_1::serial::ErrorKind::Parity,
}
}
}
impl<'d, T: Instance> embedded_hal_1::serial::ErrorType for Uart<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::serial::ErrorType for UartTx<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::serial::ErrorType for UartRx<'d, T> {
type Error = Error;
}
}
cfg_if::cfg_if! {
if #[cfg(all(feature = "unstable-traits", feature = "nightly", feature = "_todo_embedded_hal_serial"))] {
use core::future::Future;
impl<'d, T: Instance> embedded_hal_async::serial::Write for UartTx<'d, T>
{
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
self.write(buf)
}
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
async move { Ok(()) }
}
}
impl<'d, T: Instance> embedded_hal_async::serial::Read for UartRx<'d, T>
{
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
self.read(buf)
}
}
impl<'d, T: Instance> embedded_hal_async::serial::Write for Uart<'d, T>
{
type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn write<'a>(&'a mut self, buf: &'a [u8]) -> Self::WriteFuture<'a> {
self.write(buf)
}
type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> {
async move { Ok(()) }
}
}
impl<'d, T: Instance> embedded_hal_async::serial::Read for Uart<'d, T>
{
type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a;
fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Self::ReadFuture<'a> {
self.read(buf)
}
}
}
} }
mod sealed { mod sealed {
use super::*; use super::*;
pub trait Instance { pub trait Instance {
fn regs(&self) -> pac::uart::Uart; fn regs() -> pac::uart::Uart;
} }
pub trait TxPin<T: Instance> {} pub trait TxPin<T: Instance> {}
pub trait RxPin<T: Instance> {} pub trait RxPin<T: Instance> {}
@ -106,23 +431,23 @@ mod sealed {
pub trait Instance: sealed::Instance {} pub trait Instance: sealed::Instance {}
macro_rules! impl_instance { macro_rules! impl_instance {
($type:ident, $irq:ident) => { ($inst:ident, $irq:ident) => {
impl sealed::Instance for peripherals::$type { impl sealed::Instance for peripherals::$inst {
fn regs(&self) -> pac::uart::Uart { fn regs() -> pac::uart::Uart {
pac::$type pac::$inst
} }
} }
impl Instance for peripherals::$type {} impl Instance for peripherals::$inst {}
}; };
} }
impl_instance!(UART0, UART0); impl_instance!(UART0, UART0);
impl_instance!(UART1, UART1); impl_instance!(UART1, UART1);
pub trait TxPin<T: Instance>: sealed::TxPin<T> + Pin {} pub trait TxPin<T: Instance>: sealed::TxPin<T> + crate::gpio::Pin {}
pub trait RxPin<T: Instance>: sealed::RxPin<T> + Pin {} pub trait RxPin<T: Instance>: sealed::RxPin<T> + crate::gpio::Pin {}
pub trait CtsPin<T: Instance>: sealed::CtsPin<T> + Pin {} pub trait CtsPin<T: Instance>: sealed::CtsPin<T> + crate::gpio::Pin {}
pub trait RtsPin<T: Instance>: sealed::RtsPin<T> + Pin {} pub trait RtsPin<T: Instance>: sealed::RtsPin<T> + crate::gpio::Pin {}
macro_rules! impl_pin { macro_rules! impl_pin {
($pin:ident, $instance:ident, $function:ident) => { ($pin:ident, $instance:ident, $function:ident) => {