diff --git a/embassy-stm32/Cargo.toml b/embassy-stm32/Cargo.toml
index 08ccd35ae..460184920 100644
--- a/embassy-stm32/Cargo.toml
+++ b/embassy-stm32/Cargo.toml
@@ -70,7 +70,7 @@ rand_core = "0.6.3"
 sdio-host = "0.5.0"
 critical-section = "1.1"
 #stm32-metapac = { version = "15" }
-stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-4a0bcec33362449fb733c066936d25cbabab396a" }
+stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-d7462d805ef05892531a83cd9ad60c9cba568d54" }
 vcell = "0.1.3"
 bxcan = "0.7.0"
 nb = "1.0.0"
@@ -94,7 +94,7 @@ critical-section = { version = "1.1", features = ["std"] }
 proc-macro2 = "1.0.36"
 quote = "1.0.15"
 #stm32-metapac = { version = "15", default-features = false, features = ["metadata"]}
-stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-4a0bcec33362449fb733c066936d25cbabab396a", default-features = false, features = ["metadata"]}
+stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-d7462d805ef05892531a83cd9ad60c9cba568d54", default-features = false, features = ["metadata"]}
 
 
 [features]
diff --git a/embassy-stm32/src/cryp/mod.rs b/embassy-stm32/src/cryp/mod.rs
new file mode 100644
index 000000000..8f259520a
--- /dev/null
+++ b/embassy-stm32/src/cryp/mod.rs
@@ -0,0 +1,1356 @@
+//! Crypto Accelerator (CRYP)
+#[cfg(any(cryp_v2, cryp_v3))]
+use core::cmp::min;
+use core::marker::PhantomData;
+
+use embassy_hal_internal::{into_ref, PeripheralRef};
+
+use crate::{interrupt, pac, peripherals, Peripheral};
+
+const DES_BLOCK_SIZE: usize = 8; // 64 bits
+const AES_BLOCK_SIZE: usize = 16; // 128 bits
+
+/// This trait encapsulates all cipher-specific behavior/
+pub trait Cipher<'c> {
+    /// Processing block size. Determined by the processor and the algorithm.
+    const BLOCK_SIZE: usize;
+
+    /// Indicates whether the cipher requires the application to provide padding.
+    /// If `true`, no partial blocks will be accepted (a panic will occur).
+    const REQUIRES_PADDING: bool = false;
+
+    /// Returns the symmetric key.
+    fn key(&self) -> &[u8];
+
+    /// Returns the initialization vector.
+    fn iv(&self) -> &[u8];
+
+    /// Sets the processor algorithm mode according to the associated cipher.
+    fn set_algomode(&self, p: &pac::cryp::Cryp);
+
+    /// Performs any key preparation within the processor, if necessary.
+    fn prepare_key(&self, _p: &pac::cryp::Cryp) {}
+
+    /// Performs any cipher-specific initialization.
+    fn init_phase(&self, _p: &pac::cryp::Cryp) {}
+
+    /// Called prior to processing the last data block for cipher-specific operations.
+    fn pre_final_block(&self, _p: &pac::cryp::Cryp, _dir: Direction, _padding_len: usize) -> [u32; 4] {
+        return [0; 4];
+    }
+
+    /// Called after processing the last data block for cipher-specific operations.
+    fn post_final_block(
+        &self,
+        _p: &pac::cryp::Cryp,
+        _dir: Direction,
+        _int_data: &mut [u8; AES_BLOCK_SIZE],
+        _temp1: [u32; 4],
+        _padding_mask: [u8; 16],
+    ) {
+    }
+
+    /// Called prior to processing the first associated data block for cipher-specific operations.
+    fn get_header_block(&self) -> &[u8] {
+        return [0; 0].as_slice();
+    }
+}
+
+/// This trait enables restriction of ciphers to specific key sizes.
+pub trait CipherSized {}
+
+/// This trait enables restriction of initialization vectors to sizes compatibile with a cipher mode.
+pub trait IVSized {}
+
+/// This trait enables restriction of a header phase to authenticated ciphers only.
+pub trait CipherAuthenticated<const TAG_SIZE: usize> {
+    /// Defines the authentication tag size.
+    const TAG_SIZE: usize = TAG_SIZE;
+}
+
+/// TDES-ECB Cipher Mode
+pub struct TdesEcb<'c, const KEY_SIZE: usize> {
+    iv: &'c [u8; 0],
+    key: &'c [u8; KEY_SIZE],
+}
+
+impl<'c, const KEY_SIZE: usize> TdesEcb<'c, KEY_SIZE> {
+    /// Constructs a new AES-ECB cipher for a cryptographic operation.
+    pub fn new(key: &'c [u8; KEY_SIZE]) -> Self {
+        return Self { key: key, iv: &[0; 0] };
+    }
+}
+
+impl<'c, const KEY_SIZE: usize> Cipher<'c> for TdesEcb<'c, KEY_SIZE> {
+    const BLOCK_SIZE: usize = DES_BLOCK_SIZE;
+    const REQUIRES_PADDING: bool = true;
+
+    fn key(&self) -> &'c [u8] {
+        self.key
+    }
+
+    fn iv(&self) -> &'c [u8] {
+        self.iv
+    }
+
+    fn set_algomode(&self, p: &pac::cryp::Cryp) {
+        #[cfg(cryp_v1)]
+        {
+            p.cr().modify(|w| w.set_algomode(0));
+        }
+        #[cfg(any(cryp_v2, cryp_v3))]
+        {
+            p.cr().modify(|w| w.set_algomode0(0));
+            p.cr().modify(|w| w.set_algomode3(false));
+        }
+    }
+}
+
+impl<'c> CipherSized for TdesEcb<'c, { 112 / 8 }> {}
+impl<'c> CipherSized for TdesEcb<'c, { 168 / 8 }> {}
+impl<'c, const KEY_SIZE: usize> IVSized for TdesEcb<'c, KEY_SIZE> {}
+
+/// TDES-CBC Cipher Mode
+pub struct TdesCbc<'c, const KEY_SIZE: usize> {
+    iv: &'c [u8; 8],
+    key: &'c [u8; KEY_SIZE],
+}
+
+impl<'c, const KEY_SIZE: usize> TdesCbc<'c, KEY_SIZE> {
+    /// Constructs a new TDES-CBC cipher for a cryptographic operation.
+    pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 8]) -> Self {
+        return Self { key: key, iv: iv };
+    }
+}
+
+impl<'c, const KEY_SIZE: usize> Cipher<'c> for TdesCbc<'c, KEY_SIZE> {
+    const BLOCK_SIZE: usize = DES_BLOCK_SIZE;
+    const REQUIRES_PADDING: bool = true;
+
+    fn key(&self) -> &'c [u8] {
+        self.key
+    }
+
+    fn iv(&self) -> &'c [u8] {
+        self.iv
+    }
+
+    fn set_algomode(&self, p: &pac::cryp::Cryp) {
+        #[cfg(cryp_v1)]
+        {
+            p.cr().modify(|w| w.set_algomode(1));
+        }
+        #[cfg(any(cryp_v2, cryp_v3))]
+        {
+            p.cr().modify(|w| w.set_algomode0(1));
+            p.cr().modify(|w| w.set_algomode3(false));
+        }
+    }
+}
+
+impl<'c> CipherSized for TdesCbc<'c, { 112 / 8 }> {}
+impl<'c> CipherSized for TdesCbc<'c, { 168 / 8 }> {}
+impl<'c, const KEY_SIZE: usize> IVSized for TdesCbc<'c, KEY_SIZE> {}
+
+/// DES-ECB Cipher Mode
+pub struct DesEcb<'c, const KEY_SIZE: usize> {
+    iv: &'c [u8; 0],
+    key: &'c [u8; KEY_SIZE],
+}
+
+impl<'c, const KEY_SIZE: usize> DesEcb<'c, KEY_SIZE> {
+    /// Constructs a new AES-ECB cipher for a cryptographic operation.
+    pub fn new(key: &'c [u8; KEY_SIZE]) -> Self {
+        return Self { key: key, iv: &[0; 0] };
+    }
+}
+
+impl<'c, const KEY_SIZE: usize> Cipher<'c> for DesEcb<'c, KEY_SIZE> {
+    const BLOCK_SIZE: usize = DES_BLOCK_SIZE;
+    const REQUIRES_PADDING: bool = true;
+
+    fn key(&self) -> &'c [u8] {
+        self.key
+    }
+
+    fn iv(&self) -> &'c [u8] {
+        self.iv
+    }
+
+    fn set_algomode(&self, p: &pac::cryp::Cryp) {
+        #[cfg(cryp_v1)]
+        {
+            p.cr().modify(|w| w.set_algomode(2));
+        }
+        #[cfg(any(cryp_v2, cryp_v3))]
+        {
+            p.cr().modify(|w| w.set_algomode0(2));
+            p.cr().modify(|w| w.set_algomode3(false));
+        }
+    }
+}
+
+impl<'c> CipherSized for DesEcb<'c, { 56 / 8 }> {}
+impl<'c, const KEY_SIZE: usize> IVSized for DesEcb<'c, KEY_SIZE> {}
+
+/// DES-CBC Cipher Mode
+pub struct DesCbc<'c, const KEY_SIZE: usize> {
+    iv: &'c [u8; 8],
+    key: &'c [u8; KEY_SIZE],
+}
+
+impl<'c, const KEY_SIZE: usize> DesCbc<'c, KEY_SIZE> {
+    /// Constructs a new AES-CBC cipher for a cryptographic operation.
+    pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 8]) -> Self {
+        return Self { key: key, iv: iv };
+    }
+}
+
+impl<'c, const KEY_SIZE: usize> Cipher<'c> for DesCbc<'c, KEY_SIZE> {
+    const BLOCK_SIZE: usize = DES_BLOCK_SIZE;
+    const REQUIRES_PADDING: bool = true;
+
+    fn key(&self) -> &'c [u8] {
+        self.key
+    }
+
+    fn iv(&self) -> &'c [u8] {
+        self.iv
+    }
+
+    fn set_algomode(&self, p: &pac::cryp::Cryp) {
+        #[cfg(cryp_v1)]
+        {
+            p.cr().modify(|w| w.set_algomode(3));
+        }
+        #[cfg(any(cryp_v2, cryp_v3))]
+        {
+            p.cr().modify(|w| w.set_algomode0(3));
+            p.cr().modify(|w| w.set_algomode3(false));
+        }
+    }
+}
+
+impl<'c> CipherSized for DesCbc<'c, { 56 / 8 }> {}
+impl<'c, const KEY_SIZE: usize> IVSized for DesCbc<'c, KEY_SIZE> {}
+
+/// AES-ECB Cipher Mode
+pub struct AesEcb<'c, const KEY_SIZE: usize> {
+    iv: &'c [u8; 0],
+    key: &'c [u8; KEY_SIZE],
+}
+
+impl<'c, const KEY_SIZE: usize> AesEcb<'c, KEY_SIZE> {
+    /// Constructs a new AES-ECB cipher for a cryptographic operation.
+    pub fn new(key: &'c [u8; KEY_SIZE]) -> Self {
+        return Self { key: key, iv: &[0; 0] };
+    }
+}
+
+impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesEcb<'c, KEY_SIZE> {
+    const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
+    const REQUIRES_PADDING: bool = true;
+
+    fn key(&self) -> &'c [u8] {
+        self.key
+    }
+
+    fn iv(&self) -> &'c [u8] {
+        self.iv
+    }
+
+    fn prepare_key(&self, p: &pac::cryp::Cryp) {
+        #[cfg(cryp_v1)]
+        {
+            p.cr().modify(|w| w.set_algomode(7));
+        }
+        #[cfg(any(cryp_v2, cryp_v3))]
+        {
+            p.cr().modify(|w| w.set_algomode0(7));
+            p.cr().modify(|w| w.set_algomode3(false));
+        }
+        p.cr().modify(|w| w.set_crypen(true));
+        while p.sr().read().busy() {}
+    }
+
+    fn set_algomode(&self, p: &pac::cryp::Cryp) {
+        #[cfg(cryp_v1)]
+        {
+            p.cr().modify(|w| w.set_algomode(2));
+        }
+        #[cfg(any(cryp_v2, cryp_v3))]
+        {
+            p.cr().modify(|w| w.set_algomode0(2));
+            p.cr().modify(|w| w.set_algomode3(false));
+        }
+    }
+}
+
+impl<'c> CipherSized for AesEcb<'c, { 128 / 8 }> {}
+impl<'c> CipherSized for AesEcb<'c, { 192 / 8 }> {}
+impl<'c> CipherSized for AesEcb<'c, { 256 / 8 }> {}
+impl<'c, const KEY_SIZE: usize> IVSized for AesEcb<'c, KEY_SIZE> {}
+
+/// AES-CBC Cipher Mode
+pub struct AesCbc<'c, const KEY_SIZE: usize> {
+    iv: &'c [u8; 16],
+    key: &'c [u8; KEY_SIZE],
+}
+
+impl<'c, const KEY_SIZE: usize> AesCbc<'c, KEY_SIZE> {
+    /// Constructs a new AES-CBC cipher for a cryptographic operation.
+    pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 16]) -> Self {
+        return Self { key: key, iv: iv };
+    }
+}
+
+impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesCbc<'c, KEY_SIZE> {
+    const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
+    const REQUIRES_PADDING: bool = true;
+
+    fn key(&self) -> &'c [u8] {
+        self.key
+    }
+
+    fn iv(&self) -> &'c [u8] {
+        self.iv
+    }
+
+    fn prepare_key(&self, p: &pac::cryp::Cryp) {
+        #[cfg(cryp_v1)]
+        {
+            p.cr().modify(|w| w.set_algomode(7));
+        }
+        #[cfg(any(cryp_v2, cryp_v3))]
+        {
+            p.cr().modify(|w| w.set_algomode0(7));
+            p.cr().modify(|w| w.set_algomode3(false));
+        }
+        p.cr().modify(|w| w.set_crypen(true));
+        while p.sr().read().busy() {}
+    }
+
+    fn set_algomode(&self, p: &pac::cryp::Cryp) {
+        #[cfg(cryp_v1)]
+        {
+            p.cr().modify(|w| w.set_algomode(5));
+        }
+        #[cfg(any(cryp_v2, cryp_v3))]
+        {
+            p.cr().modify(|w| w.set_algomode0(5));
+            p.cr().modify(|w| w.set_algomode3(false));
+        }
+    }
+}
+
+impl<'c> CipherSized for AesCbc<'c, { 128 / 8 }> {}
+impl<'c> CipherSized for AesCbc<'c, { 192 / 8 }> {}
+impl<'c> CipherSized for AesCbc<'c, { 256 / 8 }> {}
+impl<'c, const KEY_SIZE: usize> IVSized for AesCbc<'c, KEY_SIZE> {}
+
+/// AES-CTR Cipher Mode
+pub struct AesCtr<'c, const KEY_SIZE: usize> {
+    iv: &'c [u8; 16],
+    key: &'c [u8; KEY_SIZE],
+}
+
+impl<'c, const KEY_SIZE: usize> AesCtr<'c, KEY_SIZE> {
+    /// Constructs a new AES-CTR cipher for a cryptographic operation.
+    pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 16]) -> Self {
+        return Self { key: key, iv: iv };
+    }
+}
+
+impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesCtr<'c, KEY_SIZE> {
+    const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
+
+    fn key(&self) -> &'c [u8] {
+        self.key
+    }
+
+    fn iv(&self) -> &'c [u8] {
+        self.iv
+    }
+
+    fn set_algomode(&self, p: &pac::cryp::Cryp) {
+        #[cfg(cryp_v1)]
+        {
+            p.cr().modify(|w| w.set_algomode(6));
+        }
+        #[cfg(any(cryp_v2, cryp_v3))]
+        {
+            p.cr().modify(|w| w.set_algomode0(6));
+            p.cr().modify(|w| w.set_algomode3(false));
+        }
+    }
+}
+
+impl<'c> CipherSized for AesCtr<'c, { 128 / 8 }> {}
+impl<'c> CipherSized for AesCtr<'c, { 192 / 8 }> {}
+impl<'c> CipherSized for AesCtr<'c, { 256 / 8 }> {}
+impl<'c, const KEY_SIZE: usize> IVSized for AesCtr<'c, KEY_SIZE> {}
+
+#[cfg(any(cryp_v2, cryp_v3))]
+///AES-GCM Cipher Mode
+pub struct AesGcm<'c, const KEY_SIZE: usize> {
+    iv: [u8; 16],
+    key: &'c [u8; KEY_SIZE],
+}
+
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize> AesGcm<'c, KEY_SIZE> {
+    /// Constucts a new AES-GCM cipher for a cryptographic operation.
+    pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 12]) -> Self {
+        let mut new_gcm = Self { key: key, iv: [0; 16] };
+        new_gcm.iv[..12].copy_from_slice(iv);
+        new_gcm.iv[15] = 2;
+        new_gcm
+    }
+}
+
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGcm<'c, KEY_SIZE> {
+    const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
+
+    fn key(&self) -> &'c [u8] {
+        self.key
+    }
+
+    fn iv(&self) -> &[u8] {
+        self.iv.as_slice()
+    }
+
+    fn set_algomode(&self, p: &pac::cryp::Cryp) {
+        p.cr().modify(|w| w.set_algomode0(0));
+        p.cr().modify(|w| w.set_algomode3(true));
+    }
+
+    fn init_phase(&self, p: &pac::cryp::Cryp) {
+        p.cr().modify(|w| w.set_gcm_ccmph(0));
+        p.cr().modify(|w| w.set_crypen(true));
+        while p.cr().read().crypen() {}
+    }
+
+    #[cfg(cryp_v2)]
+    fn pre_final_block(&self, p: &pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
+        //Handle special GCM partial block process.
+        if dir == Direction::Encrypt {
+            p.cr().modify(|w| w.set_crypen(false));
+            p.cr().modify(|w| w.set_algomode3(false));
+            p.cr().modify(|w| w.set_algomode0(6));
+            let iv1r = p.csgcmccmr(7).read() - 1;
+            p.init(1).ivrr().write_value(iv1r);
+            p.cr().modify(|w| w.set_crypen(true));
+        }
+        [0; 4]
+    }
+
+    #[cfg(cryp_v3)]
+    fn pre_final_block(&self, p: &pac::cryp::Cryp, _dir: Direction, padding_len: usize) -> [u32; 4] {
+        //Handle special GCM partial block process.
+        p.cr().modify(|w| w.set_npblb(padding_len as u8));
+        [0; 4]
+    }
+
+    #[cfg(cryp_v2)]
+    fn post_final_block(
+        &self,
+        p: &pac::cryp::Cryp,
+        dir: Direction,
+        int_data: &mut [u8; AES_BLOCK_SIZE],
+        _temp1: [u32; 4],
+        padding_mask: [u8; AES_BLOCK_SIZE],
+    ) {
+        if dir == Direction::Encrypt {
+            //Handle special GCM partial block process.
+            p.cr().modify(|w| w.set_crypen(false));
+            p.cr().modify(|w| w.set_algomode3(true));
+            p.cr().modify(|w| w.set_algomode0(0));
+            for i in 0..AES_BLOCK_SIZE {
+                int_data[i] = int_data[i] & padding_mask[i];
+            }
+            p.cr().modify(|w| w.set_crypen(true));
+            p.cr().modify(|w| w.set_gcm_ccmph(3));
+            let mut index = 0;
+            let end_index = Self::BLOCK_SIZE;
+            while index < end_index {
+                let mut in_word: [u8; 4] = [0; 4];
+                in_word.copy_from_slice(&int_data[index..index + 4]);
+                p.din().write_value(u32::from_ne_bytes(in_word));
+                index += 4;
+            }
+            for _ in 0..4 {
+                p.dout().read();
+            }
+        }
+    }
+}
+
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c> CipherSized for AesGcm<'c, { 128 / 8 }> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c> CipherSized for AesGcm<'c, { 192 / 8 }> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c> CipherSized for AesGcm<'c, { 256 / 8 }> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize> CipherAuthenticated<16> for AesGcm<'c, KEY_SIZE> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize> IVSized for AesGcm<'c, KEY_SIZE> {}
+
+#[cfg(any(cryp_v2, cryp_v3))]
+/// AES-GMAC Cipher Mode
+pub struct AesGmac<'c, const KEY_SIZE: usize> {
+    iv: [u8; 16],
+    key: &'c [u8; KEY_SIZE],
+}
+
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize> AesGmac<'c, KEY_SIZE> {
+    /// Constructs a new AES-GMAC cipher for a cryptographic operation.
+    pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; 12]) -> Self {
+        let mut new_gmac = Self { key: key, iv: [0; 16] };
+        new_gmac.iv[..12].copy_from_slice(iv);
+        new_gmac.iv[15] = 2;
+        new_gmac
+    }
+}
+
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize> Cipher<'c> for AesGmac<'c, KEY_SIZE> {
+    const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
+
+    fn key(&self) -> &'c [u8] {
+        self.key
+    }
+
+    fn iv(&self) -> &[u8] {
+        self.iv.as_slice()
+    }
+
+    fn set_algomode(&self, p: &pac::cryp::Cryp) {
+        p.cr().modify(|w| w.set_algomode0(0));
+        p.cr().modify(|w| w.set_algomode3(true));
+    }
+
+    fn init_phase(&self, p: &pac::cryp::Cryp) {
+        p.cr().modify(|w| w.set_gcm_ccmph(0));
+        p.cr().modify(|w| w.set_crypen(true));
+        while p.cr().read().crypen() {}
+    }
+
+    #[cfg(cryp_v2)]
+    fn pre_final_block(&self, p: &pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
+        //Handle special GCM partial block process.
+        if dir == Direction::Encrypt {
+            p.cr().modify(|w| w.set_crypen(false));
+            p.cr().modify(|w| w.set_algomode3(false));
+            p.cr().modify(|w| w.set_algomode0(6));
+            let iv1r = p.csgcmccmr(7).read() - 1;
+            p.init(1).ivrr().write_value(iv1r);
+            p.cr().modify(|w| w.set_crypen(true));
+        }
+        [0; 4]
+    }
+
+    #[cfg(cryp_v3)]
+    fn pre_final_block(&self, p: &pac::cryp::Cryp, _dir: Direction, padding_len: usize) -> [u32; 4] {
+        //Handle special GCM partial block process.
+        p.cr().modify(|w| w.set_npblb(padding_len as u8));
+        [0; 4]
+    }
+
+    #[cfg(cryp_v2)]
+    fn post_final_block(
+        &self,
+        p: &pac::cryp::Cryp,
+        dir: Direction,
+        int_data: &mut [u8; AES_BLOCK_SIZE],
+        _temp1: [u32; 4],
+        padding_mask: [u8; AES_BLOCK_SIZE],
+    ) {
+        if dir == Direction::Encrypt {
+            //Handle special GCM partial block process.
+            p.cr().modify(|w| w.set_crypen(false));
+            p.cr().modify(|w| w.set_algomode3(true));
+            p.cr().modify(|w| w.set_algomode0(0));
+            for i in 0..AES_BLOCK_SIZE {
+                int_data[i] = int_data[i] & padding_mask[i];
+            }
+            p.cr().modify(|w| w.set_crypen(true));
+            p.cr().modify(|w| w.set_gcm_ccmph(3));
+            let mut index = 0;
+            let end_index = Self::BLOCK_SIZE;
+            while index < end_index {
+                let mut in_word: [u8; 4] = [0; 4];
+                in_word.copy_from_slice(&int_data[index..index + 4]);
+                p.din().write_value(u32::from_ne_bytes(in_word));
+                index += 4;
+            }
+            for _ in 0..4 {
+                p.dout().read();
+            }
+        }
+    }
+}
+
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c> CipherSized for AesGmac<'c, { 128 / 8 }> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c> CipherSized for AesGmac<'c, { 192 / 8 }> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c> CipherSized for AesGmac<'c, { 256 / 8 }> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize> CipherAuthenticated<16> for AesGmac<'c, KEY_SIZE> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize> IVSized for AesGmac<'c, KEY_SIZE> {}
+
+#[cfg(any(cryp_v2, cryp_v3))]
+/// AES-CCM Cipher Mode
+pub struct AesCcm<'c, const KEY_SIZE: usize, const TAG_SIZE: usize, const IV_SIZE: usize> {
+    key: &'c [u8; KEY_SIZE],
+    aad_header: [u8; 6],
+    aad_header_len: usize,
+    block0: [u8; 16],
+    ctr: [u8; 16],
+}
+
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize, const IV_SIZE: usize> AesCcm<'c, KEY_SIZE, TAG_SIZE, IV_SIZE> {
+    /// Constructs a new AES-CCM cipher for a cryptographic operation.
+    pub fn new(key: &'c [u8; KEY_SIZE], iv: &'c [u8; IV_SIZE], aad_len: usize, payload_len: usize) -> Self {
+        let mut aad_header: [u8; 6] = [0; 6];
+        let mut aad_header_len = 0;
+        let mut block0: [u8; 16] = [0; 16];
+        if aad_len != 0 {
+            if aad_len < 65280 {
+                aad_header[0] = (aad_len >> 8) as u8 & 0xFF;
+                aad_header[1] = aad_len as u8 & 0xFF;
+                aad_header_len = 2;
+            } else {
+                aad_header[0] = 0xFF;
+                aad_header[1] = 0xFE;
+                let aad_len_bytes: [u8; 4] = aad_len.to_be_bytes();
+                aad_header[2] = aad_len_bytes[0];
+                aad_header[3] = aad_len_bytes[1];
+                aad_header[4] = aad_len_bytes[2];
+                aad_header[5] = aad_len_bytes[3];
+                aad_header_len = 6;
+            }
+        }
+        let total_aad_len = aad_header_len + aad_len;
+        let mut aad_padding_len = 16 - (total_aad_len % 16);
+        if aad_padding_len == 16 {
+            aad_padding_len = 0;
+        }
+        aad_header_len += aad_padding_len;
+        let total_aad_len_padded = aad_header_len + aad_len;
+        if total_aad_len_padded > 0 {
+            block0[0] = 0x40;
+        }
+        block0[0] |= ((((TAG_SIZE as u8) - 2) >> 1) & 0x07) << 3;
+        block0[0] |= ((15 - (iv.len() as u8)) - 1) & 0x07;
+        block0[1..1 + iv.len()].copy_from_slice(iv);
+        let payload_len_bytes: [u8; 4] = payload_len.to_be_bytes();
+        if iv.len() <= 11 {
+            block0[12] = payload_len_bytes[0];
+        } else if payload_len_bytes[0] > 0 {
+            panic!("Message is too large for given IV size.");
+        }
+        if iv.len() <= 12 {
+            block0[13] = payload_len_bytes[1];
+        } else if payload_len_bytes[1] > 0 {
+            panic!("Message is too large for given IV size.");
+        }
+        block0[14] = payload_len_bytes[2];
+        block0[15] = payload_len_bytes[3];
+        let mut ctr: [u8; 16] = [0; 16];
+        ctr[0] = block0[0] & 0x07;
+        ctr[1..1 + iv.len()].copy_from_slice(&block0[1..1 + iv.len()]);
+        ctr[15] = 0x01;
+
+        return Self {
+            key: key,
+            aad_header: aad_header,
+            aad_header_len: aad_header_len,
+            block0: block0,
+            ctr: ctr,
+        };
+    }
+}
+
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize, const IV_SIZE: usize> Cipher<'c>
+    for AesCcm<'c, KEY_SIZE, TAG_SIZE, IV_SIZE>
+{
+    const BLOCK_SIZE: usize = AES_BLOCK_SIZE;
+
+    fn key(&self) -> &'c [u8] {
+        self.key
+    }
+
+    fn iv(&self) -> &[u8] {
+        self.ctr.as_slice()
+    }
+
+    fn set_algomode(&self, p: &pac::cryp::Cryp) {
+        p.cr().modify(|w| w.set_algomode0(1));
+        p.cr().modify(|w| w.set_algomode3(true));
+    }
+
+    fn init_phase(&self, p: &pac::cryp::Cryp) {
+        p.cr().modify(|w| w.set_gcm_ccmph(0));
+
+        let mut index = 0;
+        let end_index = index + Self::BLOCK_SIZE;
+        // Write block in
+        while index < end_index {
+            let mut in_word: [u8; 4] = [0; 4];
+            in_word.copy_from_slice(&self.block0[index..index + 4]);
+            p.din().write_value(u32::from_ne_bytes(in_word));
+            index += 4;
+        }
+        p.cr().modify(|w| w.set_crypen(true));
+        while p.cr().read().crypen() {}
+    }
+
+    fn get_header_block(&self) -> &[u8] {
+        return &self.aad_header[0..self.aad_header_len];
+    }
+
+    #[cfg(cryp_v2)]
+    fn pre_final_block(&self, p: &pac::cryp::Cryp, dir: Direction, _padding_len: usize) -> [u32; 4] {
+        //Handle special CCM partial block process.
+        let mut temp1 = [0; 4];
+        if dir == Direction::Decrypt {
+            p.cr().modify(|w| w.set_crypen(false));
+            let iv1temp = p.init(1).ivrr().read();
+            temp1[0] = p.csgcmccmr(0).read().swap_bytes();
+            temp1[1] = p.csgcmccmr(1).read().swap_bytes();
+            temp1[2] = p.csgcmccmr(2).read().swap_bytes();
+            temp1[3] = p.csgcmccmr(3).read().swap_bytes();
+            p.init(1).ivrr().write_value(iv1temp);
+            p.cr().modify(|w| w.set_algomode3(false));
+            p.cr().modify(|w| w.set_algomode0(6));
+            p.cr().modify(|w| w.set_crypen(true));
+        }
+        return temp1;
+    }
+
+    #[cfg(cryp_v3)]
+    fn pre_final_block(&self, p: &pac::cryp::Cryp, _dir: Direction, padding_len: usize) -> [u32; 4] {
+        //Handle special GCM partial block process.
+        p.cr().modify(|w| w.set_npblb(padding_len as u8));
+        [0; 4]
+    }
+
+    #[cfg(cryp_v2)]
+    fn post_final_block(
+        &self,
+        p: &pac::cryp::Cryp,
+        dir: Direction,
+        int_data: &mut [u8; AES_BLOCK_SIZE],
+        temp1: [u32; 4],
+        padding_mask: [u8; 16],
+    ) {
+        if dir == Direction::Decrypt {
+            //Handle special CCM partial block process.
+            let mut temp2 = [0; 4];
+            temp2[0] = p.csgcmccmr(0).read().swap_bytes();
+            temp2[1] = p.csgcmccmr(1).read().swap_bytes();
+            temp2[2] = p.csgcmccmr(2).read().swap_bytes();
+            temp2[3] = p.csgcmccmr(3).read().swap_bytes();
+            p.cr().modify(|w| w.set_algomode3(true));
+            p.cr().modify(|w| w.set_algomode0(1));
+            p.cr().modify(|w| w.set_gcm_ccmph(3));
+            // Header phase
+            p.cr().modify(|w| w.set_gcm_ccmph(1));
+            for i in 0..AES_BLOCK_SIZE {
+                int_data[i] = int_data[i] & padding_mask[i];
+            }
+            let mut in_data: [u32; 4] = [0; 4];
+            for i in 0..in_data.len() {
+                let mut int_bytes: [u8; 4] = [0; 4];
+                int_bytes.copy_from_slice(&int_data[(i * 4)..(i * 4) + 4]);
+                let int_word = u32::from_le_bytes(int_bytes);
+                in_data[i] = int_word;
+                in_data[i] = in_data[i] ^ temp1[i] ^ temp2[i];
+                p.din().write_value(in_data[i]);
+            }
+        }
+    }
+}
+
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const TAG_SIZE: usize, const IV_SIZE: usize> CipherSized for AesCcm<'c, { 128 / 8 }, TAG_SIZE, IV_SIZE> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const TAG_SIZE: usize, const IV_SIZE: usize> CipherSized for AesCcm<'c, { 192 / 8 }, TAG_SIZE, IV_SIZE> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const TAG_SIZE: usize, const IV_SIZE: usize> CipherSized for AesCcm<'c, { 256 / 8 }, TAG_SIZE, IV_SIZE> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<4> for AesCcm<'c, KEY_SIZE, 4, IV_SIZE> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<6> for AesCcm<'c, KEY_SIZE, 6, IV_SIZE> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<8> for AesCcm<'c, KEY_SIZE, 8, IV_SIZE> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<10> for AesCcm<'c, KEY_SIZE, 10, IV_SIZE> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<12> for AesCcm<'c, KEY_SIZE, 12, IV_SIZE> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<14> for AesCcm<'c, KEY_SIZE, 14, IV_SIZE> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const IV_SIZE: usize> CipherAuthenticated<16> for AesCcm<'c, KEY_SIZE, 16, IV_SIZE> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 7> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 8> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 9> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 10> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 11> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 12> {}
+#[cfg(any(cryp_v2, cryp_v3))]
+impl<'c, const KEY_SIZE: usize, const TAG_SIZE: usize> IVSized for AesCcm<'c, KEY_SIZE, TAG_SIZE, 13> {}
+
+#[allow(dead_code)]
+/// Holds the state information for a cipher operation.
+/// Allows suspending/resuming of cipher operations.
+pub struct Context<'c, C: Cipher<'c> + CipherSized> {
+    phantom_data: PhantomData<&'c C>,
+    cipher: &'c C,
+    dir: Direction,
+    last_block_processed: bool,
+    header_processed: bool,
+    aad_complete: bool,
+    cr: u32,
+    iv: [u32; 4],
+    csgcmccm: [u32; 8],
+    csgcm: [u32; 8],
+    header_len: u64,
+    payload_len: u64,
+    aad_buffer: [u8; 16],
+    aad_buffer_len: usize,
+}
+
+/// Selects whether the crypto processor operates in encryption or decryption mode.
+#[derive(PartialEq, Clone, Copy)]
+pub enum Direction {
+    /// Encryption mode
+    Encrypt,
+    /// Decryption mode
+    Decrypt,
+}
+
+/// Crypto Accelerator Driver
+pub struct Cryp<'d, T: Instance> {
+    _peripheral: PeripheralRef<'d, T>,
+}
+
+impl<'d, T: Instance> Cryp<'d, T> {
+    /// Create a new CRYP driver.
+    pub fn new(peri: impl Peripheral<P = T> + 'd) -> Self {
+        T::enable_and_reset();
+        into_ref!(peri);
+        let instance = Self { _peripheral: peri };
+        instance
+    }
+
+    /// Start a new cipher operation.
+    /// Key size must be 128, 192, or 256 bits.
+    /// Initialization vector must only be supplied if necessary.
+    /// Panics if there is any mismatch in parameters, such as an incorrect IV length or invalid mode.
+    pub fn start<'c, C: Cipher<'c> + CipherSized + IVSized>(&self, cipher: &'c C, dir: Direction) -> Context<'c, C> {
+        let mut ctx: Context<'c, C> = Context {
+            dir,
+            last_block_processed: false,
+            cr: 0,
+            iv: [0; 4],
+            csgcmccm: [0; 8],
+            csgcm: [0; 8],
+            aad_complete: false,
+            header_len: 0,
+            payload_len: 0,
+            cipher: cipher,
+            phantom_data: PhantomData,
+            header_processed: false,
+            aad_buffer: [0; 16],
+            aad_buffer_len: 0,
+        };
+
+        T::regs().cr().modify(|w| w.set_crypen(false));
+
+        let key = ctx.cipher.key();
+
+        if key.len() == (128 / 8) {
+            T::regs().cr().modify(|w| w.set_keysize(0));
+        } else if key.len() == (192 / 8) {
+            T::regs().cr().modify(|w| w.set_keysize(1));
+        } else if key.len() == (256 / 8) {
+            T::regs().cr().modify(|w| w.set_keysize(2));
+        }
+
+        self.load_key(key);
+
+        // Set data type to 8-bit. This will match software implementations.
+        T::regs().cr().modify(|w| w.set_datatype(2));
+
+        ctx.cipher.prepare_key(&T::regs());
+
+        ctx.cipher.set_algomode(&T::regs());
+
+        // Set encrypt/decrypt
+        if dir == Direction::Encrypt {
+            T::regs().cr().modify(|w| w.set_algodir(false));
+        } else {
+            T::regs().cr().modify(|w| w.set_algodir(true));
+        }
+
+        // Load the IV into the registers.
+        let iv = ctx.cipher.iv();
+        let mut full_iv: [u8; 16] = [0; 16];
+        full_iv[0..iv.len()].copy_from_slice(iv);
+        let mut iv_idx = 0;
+        let mut iv_word: [u8; 4] = [0; 4];
+        iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
+        iv_idx += 4;
+        T::regs().init(0).ivlr().write_value(u32::from_be_bytes(iv_word));
+        iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
+        iv_idx += 4;
+        T::regs().init(0).ivrr().write_value(u32::from_be_bytes(iv_word));
+        iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
+        iv_idx += 4;
+        T::regs().init(1).ivlr().write_value(u32::from_be_bytes(iv_word));
+        iv_word.copy_from_slice(&full_iv[iv_idx..iv_idx + 4]);
+        T::regs().init(1).ivrr().write_value(u32::from_be_bytes(iv_word));
+
+        // Flush in/out FIFOs
+        T::regs().cr().modify(|w| w.fflush());
+
+        ctx.cipher.init_phase(&T::regs());
+
+        self.store_context(&mut ctx);
+
+        ctx
+    }
+
+    #[cfg(any(cryp_v2, cryp_v3))]
+    /// Controls the header phase of cipher processing.
+    /// This function is only valid for GCM, CCM, and GMAC modes.
+    /// It only needs to be called if using one of these modes and there is associated data.
+    /// All AAD must be supplied to this function prior to starting the payload phase with `payload_blocking`.
+    /// The AAD must be supplied in multiples of the block size (128 bits), except when supplying the last block.
+    /// When supplying the last block of AAD, `last_aad_block` must be `true`.
+    pub fn aad_blocking<
+        'c,
+        const TAG_SIZE: usize,
+        C: Cipher<'c> + CipherSized + IVSized + CipherAuthenticated<TAG_SIZE>,
+    >(
+        &self,
+        ctx: &mut Context<'c, C>,
+        aad: &[u8],
+        last_aad_block: bool,
+    ) {
+        self.load_context(ctx);
+
+        // Perform checks for correctness.
+        if ctx.aad_complete {
+            panic!("Cannot update AAD after starting payload!")
+        }
+
+        ctx.header_len += aad.len() as u64;
+
+        // Header phase
+        T::regs().cr().modify(|w| w.set_crypen(false));
+        T::regs().cr().modify(|w| w.set_gcm_ccmph(1));
+        T::regs().cr().modify(|w| w.set_crypen(true));
+
+        // First write the header B1 block if not yet written.
+        if !ctx.header_processed {
+            ctx.header_processed = true;
+            let header = ctx.cipher.get_header_block();
+            ctx.aad_buffer[0..header.len()].copy_from_slice(header);
+            ctx.aad_buffer_len += header.len();
+        }
+
+        // Fill the header block to make a full block.
+        let len_to_copy = min(aad.len(), C::BLOCK_SIZE - ctx.aad_buffer_len);
+        ctx.aad_buffer[ctx.aad_buffer_len..ctx.aad_buffer_len + len_to_copy].copy_from_slice(&aad[..len_to_copy]);
+        ctx.aad_buffer_len += len_to_copy;
+        ctx.aad_buffer[ctx.aad_buffer_len..].fill(0);
+        let mut aad_len_remaining = aad.len() - len_to_copy;
+
+        if ctx.aad_buffer_len < C::BLOCK_SIZE {
+            // The buffer isn't full and this is the last buffer, so process it as is (already padded).
+            if last_aad_block {
+                let mut index = 0;
+                let end_index = C::BLOCK_SIZE;
+                // Write block in
+                while index < end_index {
+                    let mut in_word: [u8; 4] = [0; 4];
+                    in_word.copy_from_slice(&ctx.aad_buffer[index..index + 4]);
+                    T::regs().din().write_value(u32::from_ne_bytes(in_word));
+                    index += 4;
+                }
+                // Block until input FIFO is empty.
+                while !T::regs().sr().read().ifem() {}
+
+                // Switch to payload phase.
+                ctx.aad_complete = true;
+                T::regs().cr().modify(|w| w.set_crypen(false));
+                T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
+                T::regs().cr().modify(|w| w.fflush());
+            } else {
+                // Just return because we don't yet have a full block to process.
+                return;
+            }
+        } else {
+            // Load the full block from the buffer.
+            let mut index = 0;
+            let end_index = C::BLOCK_SIZE;
+            // Write block in
+            while index < end_index {
+                let mut in_word: [u8; 4] = [0; 4];
+                in_word.copy_from_slice(&ctx.aad_buffer[index..index + 4]);
+                T::regs().din().write_value(u32::from_ne_bytes(in_word));
+                index += 4;
+            }
+            // Block until input FIFO is empty.
+            while !T::regs().sr().read().ifem() {}
+        }
+
+        // Handle a partial block that is passed in.
+        ctx.aad_buffer_len = 0;
+        let leftovers = aad_len_remaining % C::BLOCK_SIZE;
+        ctx.aad_buffer[..leftovers].copy_from_slice(&aad[aad.len() - leftovers..aad.len()]);
+        ctx.aad_buffer_len += leftovers;
+        ctx.aad_buffer[ctx.aad_buffer_len..].fill(0);
+        aad_len_remaining -= leftovers;
+        assert_eq!(aad_len_remaining % C::BLOCK_SIZE, 0);
+
+        // Load full data blocks into core.
+        let num_full_blocks = aad_len_remaining / C::BLOCK_SIZE;
+        for block in 0..num_full_blocks {
+            let mut index = len_to_copy + (block * C::BLOCK_SIZE);
+            let end_index = index + C::BLOCK_SIZE;
+            // Write block in
+            while index < end_index {
+                let mut in_word: [u8; 4] = [0; 4];
+                in_word.copy_from_slice(&aad[index..index + 4]);
+                T::regs().din().write_value(u32::from_ne_bytes(in_word));
+                index += 4;
+            }
+            // Block until input FIFO is empty.
+            while !T::regs().sr().read().ifem() {}
+        }
+
+        if last_aad_block {
+            if leftovers > 0 {
+                let mut index = 0;
+                let end_index = C::BLOCK_SIZE;
+                // Write block in
+                while index < end_index {
+                    let mut in_word: [u8; 4] = [0; 4];
+                    in_word.copy_from_slice(&ctx.aad_buffer[index..index + 4]);
+                    T::regs().din().write_value(u32::from_ne_bytes(in_word));
+                    index += 4;
+                }
+                // Block until input FIFO is empty.
+                while !T::regs().sr().read().ifem() {}
+            }
+            // Switch to payload phase.
+            ctx.aad_complete = true;
+            T::regs().cr().modify(|w| w.set_crypen(false));
+            T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
+            T::regs().cr().modify(|w| w.fflush());
+        }
+
+        self.store_context(ctx);
+    }
+
+    /// Performs encryption/decryption on the provided context.
+    /// The context determines algorithm, mode, and state of the crypto accelerator.
+    /// When the last piece of data is supplied, `last_block` should be `true`.
+    /// This function panics under various mismatches of parameters.
+    /// Input and output buffer lengths must match.
+    /// Data must be a multiple of block size (128-bits for AES, 64-bits for DES) for CBC and ECB modes.
+    /// Padding or ciphertext stealing must be managed by the application for these modes.
+    /// Data must also be a multiple of block size unless `last_block` is `true`.
+    pub fn payload_blocking<'c, C: Cipher<'c> + CipherSized + IVSized>(
+        &self,
+        ctx: &mut Context<'c, C>,
+        input: &[u8],
+        output: &mut [u8],
+        last_block: bool,
+    ) {
+        self.load_context(ctx);
+
+        let last_block_remainder = input.len() % C::BLOCK_SIZE;
+
+        // Perform checks for correctness.
+        if !ctx.aad_complete && ctx.header_len > 0 {
+            panic!("Additional associated data must be processed first!");
+        } else if !ctx.aad_complete {
+            #[cfg(any(cryp_v2, cryp_v3))]
+            {
+                ctx.aad_complete = true;
+                T::regs().cr().modify(|w| w.set_crypen(false));
+                T::regs().cr().modify(|w| w.set_gcm_ccmph(2));
+                T::regs().cr().modify(|w| w.fflush());
+                T::regs().cr().modify(|w| w.set_crypen(true));
+            }
+        }
+        if ctx.last_block_processed {
+            panic!("The last block has already been processed!");
+        }
+        if input.len() > output.len() {
+            panic!("Output buffer length must match input length.");
+        }
+        if !last_block {
+            if last_block_remainder != 0 {
+                panic!("Input length must be a multiple of {} bytes.", C::BLOCK_SIZE);
+            }
+        }
+        if C::REQUIRES_PADDING {
+            if last_block_remainder != 0 {
+                panic!("Input must be a multiple of {} bytes in ECB and CBC modes. Consider padding or ciphertext stealing.", C::BLOCK_SIZE);
+            }
+        }
+        if last_block {
+            ctx.last_block_processed = true;
+        }
+
+        // Load data into core, block by block.
+        let num_full_blocks = input.len() / C::BLOCK_SIZE;
+        for block in 0..num_full_blocks {
+            let mut index = block * C::BLOCK_SIZE;
+            let end_index = index + C::BLOCK_SIZE;
+            // Write block in
+            while index < end_index {
+                let mut in_word: [u8; 4] = [0; 4];
+                in_word.copy_from_slice(&input[index..index + 4]);
+                T::regs().din().write_value(u32::from_ne_bytes(in_word));
+                index += 4;
+            }
+            let mut index = block * C::BLOCK_SIZE;
+            let end_index = index + C::BLOCK_SIZE;
+            // Block until there is output to read.
+            while !T::regs().sr().read().ofne() {}
+            // Read block out
+            while index < end_index {
+                let out_word: u32 = T::regs().dout().read();
+                output[index..index + 4].copy_from_slice(u32::to_ne_bytes(out_word).as_slice());
+                index += 4;
+            }
+        }
+
+        // Handle the final block, which is incomplete.
+        if last_block_remainder > 0 {
+            let padding_len = C::BLOCK_SIZE - last_block_remainder;
+            let temp1 = ctx.cipher.pre_final_block(&T::regs(), ctx.dir, padding_len);
+
+            let mut intermediate_data: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
+            let mut last_block: [u8; AES_BLOCK_SIZE] = [0; AES_BLOCK_SIZE];
+            last_block[..last_block_remainder].copy_from_slice(&input[input.len() - last_block_remainder..input.len()]);
+            let mut index = 0;
+            let end_index = C::BLOCK_SIZE;
+            // Write block in
+            while index < end_index {
+                let mut in_word: [u8; 4] = [0; 4];
+                in_word.copy_from_slice(&last_block[index..index + 4]);
+                T::regs().din().write_value(u32::from_ne_bytes(in_word));
+                index += 4;
+            }
+            let mut index = 0;
+            let end_index = C::BLOCK_SIZE;
+            // Block until there is output to read.
+            while !T::regs().sr().read().ofne() {}
+            // Read block out
+            while index < end_index {
+                let out_word: u32 = T::regs().dout().read();
+                intermediate_data[index..index + 4].copy_from_slice(u32::to_ne_bytes(out_word).as_slice());
+                index += 4;
+            }
+
+            // Handle the last block depending on mode.
+            let output_len = output.len();
+            output[output_len - last_block_remainder..output_len]
+                .copy_from_slice(&intermediate_data[0..last_block_remainder]);
+
+            let mut mask: [u8; 16] = [0; 16];
+            mask[..last_block_remainder].fill(0xFF);
+            ctx.cipher
+                .post_final_block(&T::regs(), ctx.dir, &mut intermediate_data, temp1, mask);
+        }
+
+        ctx.payload_len += input.len() as u64;
+
+        self.store_context(ctx);
+    }
+
+    #[cfg(any(cryp_v2, cryp_v3))]
+    /// This function only needs to be called for GCM, CCM, and GMAC modes to
+    /// generate an authentication tag.
+    pub fn finish_blocking<
+        'c,
+        const TAG_SIZE: usize,
+        C: Cipher<'c> + CipherSized + IVSized + CipherAuthenticated<TAG_SIZE>,
+    >(
+        &self,
+        mut ctx: Context<'c, C>,
+    ) -> [u8; TAG_SIZE] {
+        self.load_context(&mut ctx);
+
+        T::regs().cr().modify(|w| w.set_crypen(false));
+        T::regs().cr().modify(|w| w.set_gcm_ccmph(3));
+        T::regs().cr().modify(|w| w.set_crypen(true));
+
+        let headerlen1: u32 = ((ctx.header_len * 8) >> 32) as u32;
+        let headerlen2: u32 = (ctx.header_len * 8) as u32;
+        let payloadlen1: u32 = ((ctx.payload_len * 8) >> 32) as u32;
+        let payloadlen2: u32 = (ctx.payload_len * 8) as u32;
+
+        #[cfg(cryp_v2)]
+        {
+            T::regs().din().write_value(headerlen1.swap_bytes());
+            T::regs().din().write_value(headerlen2.swap_bytes());
+            T::regs().din().write_value(payloadlen1.swap_bytes());
+            T::regs().din().write_value(payloadlen2.swap_bytes());
+        }
+
+        #[cfg(cryp_v3)]
+        {
+            T::regs().din().write_value(headerlen1);
+            T::regs().din().write_value(headerlen2);
+            T::regs().din().write_value(payloadlen1);
+            T::regs().din().write_value(payloadlen2);
+        }
+
+        while !T::regs().sr().read().ofne() {}
+
+        let mut full_tag: [u8; 16] = [0; 16];
+        full_tag[0..4].copy_from_slice(T::regs().dout().read().to_ne_bytes().as_slice());
+        full_tag[4..8].copy_from_slice(T::regs().dout().read().to_ne_bytes().as_slice());
+        full_tag[8..12].copy_from_slice(T::regs().dout().read().to_ne_bytes().as_slice());
+        full_tag[12..16].copy_from_slice(T::regs().dout().read().to_ne_bytes().as_slice());
+        let mut tag: [u8; TAG_SIZE] = [0; TAG_SIZE];
+        tag.copy_from_slice(&full_tag[0..TAG_SIZE]);
+
+        T::regs().cr().modify(|w| w.set_crypen(false));
+
+        tag
+    }
+
+    fn load_key(&self, key: &[u8]) {
+        // Load the key into the registers.
+        let mut keyidx = 0;
+        let mut keyword: [u8; 4] = [0; 4];
+        let keylen = key.len() * 8;
+        if keylen > 192 {
+            keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
+            keyidx += 4;
+            T::regs().key(0).klr().write_value(u32::from_be_bytes(keyword));
+            keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
+            keyidx += 4;
+            T::regs().key(0).krr().write_value(u32::from_be_bytes(keyword));
+        }
+        if keylen > 128 {
+            keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
+            keyidx += 4;
+            T::regs().key(1).klr().write_value(u32::from_be_bytes(keyword));
+            keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
+            keyidx += 4;
+            T::regs().key(1).krr().write_value(u32::from_be_bytes(keyword));
+        }
+        if keylen > 64 {
+            keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
+            keyidx += 4;
+            T::regs().key(2).klr().write_value(u32::from_be_bytes(keyword));
+            keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
+            keyidx += 4;
+            T::regs().key(2).krr().write_value(u32::from_be_bytes(keyword));
+        }
+        keyword.copy_from_slice(&key[keyidx..keyidx + 4]);
+        keyidx += 4;
+        T::regs().key(3).klr().write_value(u32::from_be_bytes(keyword));
+        keyword = [0; 4];
+        keyword[0..key.len() - keyidx].copy_from_slice(&key[keyidx..key.len()]);
+        T::regs().key(3).krr().write_value(u32::from_be_bytes(keyword));
+    }
+
+    fn store_context<'c, C: Cipher<'c> + CipherSized>(&self, ctx: &mut Context<'c, C>) {
+        // Wait for data block processing to finish.
+        while !T::regs().sr().read().ifem() {}
+        while T::regs().sr().read().ofne() {}
+        while T::regs().sr().read().busy() {}
+
+        // Disable crypto processor.
+        T::regs().cr().modify(|w| w.set_crypen(false));
+
+        // Save the peripheral state.
+        ctx.cr = T::regs().cr().read().0;
+        ctx.iv[0] = T::regs().init(0).ivlr().read();
+        ctx.iv[1] = T::regs().init(0).ivrr().read();
+        ctx.iv[2] = T::regs().init(1).ivlr().read();
+        ctx.iv[3] = T::regs().init(1).ivrr().read();
+
+        #[cfg(any(cryp_v2, cryp_v3))]
+        for i in 0..8 {
+            ctx.csgcmccm[i] = T::regs().csgcmccmr(i).read();
+            ctx.csgcm[i] = T::regs().csgcmr(i).read();
+        }
+    }
+
+    fn load_context<'c, C: Cipher<'c> + CipherSized>(&self, ctx: &Context<'c, C>) {
+        // Reload state registers.
+        T::regs().cr().write(|w| w.0 = ctx.cr);
+        T::regs().init(0).ivlr().write_value(ctx.iv[0]);
+        T::regs().init(0).ivrr().write_value(ctx.iv[1]);
+        T::regs().init(1).ivlr().write_value(ctx.iv[2]);
+        T::regs().init(1).ivrr().write_value(ctx.iv[3]);
+
+        #[cfg(any(cryp_v2, cryp_v3))]
+        for i in 0..8 {
+            T::regs().csgcmccmr(i).write_value(ctx.csgcmccm[i]);
+            T::regs().csgcmr(i).write_value(ctx.csgcm[i]);
+        }
+        self.load_key(ctx.cipher.key());
+
+        // Prepare key if applicable.
+        ctx.cipher.prepare_key(&T::regs());
+        T::regs().cr().write(|w| w.0 = ctx.cr);
+
+        // Enable crypto processor.
+        T::regs().cr().modify(|w| w.set_crypen(true));
+    }
+}
+
+pub(crate) mod sealed {
+    use super::*;
+
+    pub trait Instance {
+        fn regs() -> pac::cryp::Cryp;
+    }
+}
+
+/// CRYP instance trait.
+pub trait Instance: sealed::Instance + Peripheral<P = Self> + crate::rcc::RccPeripheral + 'static + Send {
+    /// Interrupt for this CRYP instance.
+    type Interrupt: interrupt::typelevel::Interrupt;
+}
+
+foreach_interrupt!(
+    ($inst:ident, cryp, CRYP, GLOBAL, $irq:ident) => {
+        impl Instance for peripherals::$inst {
+            type Interrupt = crate::interrupt::typelevel::$irq;
+        }
+
+        impl sealed::Instance for peripherals::$inst {
+            fn regs() -> crate::pac::cryp::Cryp {
+                crate::pac::$inst
+            }
+        }
+    };
+);
diff --git a/embassy-stm32/src/lib.rs b/embassy-stm32/src/lib.rs
index 15798e115..ff77399b2 100644
--- a/embassy-stm32/src/lib.rs
+++ b/embassy-stm32/src/lib.rs
@@ -34,6 +34,8 @@ pub mod adc;
 pub mod can;
 #[cfg(crc)]
 pub mod crc;
+#[cfg(cryp)]
+pub mod cryp;
 #[cfg(dac)]
 pub mod dac;
 #[cfg(dcmi)]
diff --git a/examples/stm32f7/Cargo.toml b/examples/stm32f7/Cargo.toml
index 736e81723..305816a2b 100644
--- a/examples/stm32f7/Cargo.toml
+++ b/examples/stm32f7/Cargo.toml
@@ -30,6 +30,7 @@ embedded-storage = "0.3.1"
 static_cell = "2"
 sha2 = { version = "0.10.8", default-features = false }
 hmac = "0.12.1"
+aes-gcm = {version = "0.10.3", default-features = false, features = ["aes", "heapless"] }
 
 [profile.release]
 debug = 2
diff --git a/examples/stm32f7/src/bin/cryp.rs b/examples/stm32f7/src/bin/cryp.rs
new file mode 100644
index 000000000..04927841a
--- /dev/null
+++ b/examples/stm32f7/src/bin/cryp.rs
@@ -0,0 +1,74 @@
+#![no_std]
+#![no_main]
+
+use aes_gcm::aead::heapless::Vec;
+use aes_gcm::aead::{AeadInPlace, KeyInit};
+use aes_gcm::Aes128Gcm;
+use defmt::info;
+use embassy_executor::Spawner;
+use embassy_stm32::cryp::*;
+use embassy_stm32::Config;
+use embassy_time::Instant;
+use {defmt_rtt as _, panic_probe as _};
+
+#[embassy_executor::main]
+async fn main(_spawner: Spawner) -> ! {
+    let config = Config::default();
+    let p = embassy_stm32::init(config);
+
+    let payload: &[u8] = b"hello world";
+    let aad: &[u8] = b"additional data";
+
+    let hw_cryp = Cryp::new(p.CRYP);
+    let key: [u8; 16] = [0; 16];
+    let mut ciphertext: [u8; 11] = [0; 11];
+    let mut plaintext: [u8; 11] = [0; 11];
+    let iv: [u8; 12] = [0; 12];
+
+    let hw_start_time = Instant::now();
+
+    // Encrypt in hardware using AES-GCM 128-bit
+    let aes_gcm = AesGcm::new(&key, &iv);
+    let mut gcm_encrypt = hw_cryp.start(&aes_gcm, Direction::Encrypt);
+    hw_cryp.aad_blocking(&mut gcm_encrypt, aad, true);
+    hw_cryp.payload_blocking(&mut gcm_encrypt, payload, &mut ciphertext, true);
+    let encrypt_tag = hw_cryp.finish_blocking(gcm_encrypt);
+
+    // Decrypt in hardware using AES-GCM 128-bit
+    let mut gcm_decrypt = hw_cryp.start(&aes_gcm, Direction::Decrypt);
+    hw_cryp.aad_blocking(&mut gcm_decrypt, aad, true);
+    hw_cryp.payload_blocking(&mut gcm_decrypt, &ciphertext, &mut plaintext, true);
+    let decrypt_tag = hw_cryp.finish_blocking(gcm_decrypt);
+
+    let hw_end_time = Instant::now();
+    let hw_execution_time = hw_end_time - hw_start_time;
+
+    info!("AES-GCM Ciphertext: {:?}", ciphertext);
+    info!("AES-GCM Plaintext: {:?}", plaintext);
+    assert_eq!(payload, plaintext);
+    assert_eq!(encrypt_tag, decrypt_tag);
+
+    let sw_start_time = Instant::now();
+
+    // Encrypt in software using AES-GCM 128-bit
+    let mut payload_vec: Vec<u8, 32> = Vec::from_slice(&payload).unwrap();
+    let cipher = Aes128Gcm::new(&key.into());
+    let _ = cipher.encrypt_in_place(&iv.into(), aad.into(), &mut payload_vec);
+
+    assert_eq!(ciphertext, payload_vec[0..ciphertext.len()]);
+    assert_eq!(
+        encrypt_tag,
+        payload_vec[ciphertext.len()..ciphertext.len() + encrypt_tag.len()]
+    );
+
+    // Decrypt in software using AES-GCM 128-bit
+    let _ = cipher.decrypt_in_place(&iv.into(), aad.into(), &mut payload_vec);
+
+    let sw_end_time = Instant::now();
+    let sw_execution_time = sw_end_time - sw_start_time;
+
+    info!("Hardware Execution Time: {:?}", hw_execution_time);
+    info!("Software Execution Time: {:?}", sw_execution_time);
+
+    loop {}
+}
diff --git a/tests/stm32/Cargo.toml b/tests/stm32/Cargo.toml
index 828a28e2c..bfe003a11 100644
--- a/tests/stm32/Cargo.toml
+++ b/tests/stm32/Cargo.toml
@@ -16,8 +16,8 @@ stm32f767zi = ["embassy-stm32/stm32f767zi", "chrono", "not-gpdma", "eth", "rng"]
 stm32g071rb = ["embassy-stm32/stm32g071rb", "cm0", "not-gpdma", "dac"]
 stm32g491re = ["embassy-stm32/stm32g491re", "chrono", "stop", "not-gpdma", "rng", "fdcan"]
 stm32h563zi = ["embassy-stm32/stm32h563zi", "chrono", "eth", "rng", "hash"]
-stm32h753zi = ["embassy-stm32/stm32h753zi", "chrono", "not-gpdma", "eth", "rng", "fdcan", "hash"]
-stm32h755zi = ["embassy-stm32/stm32h755zi-cm7", "chrono", "not-gpdma", "eth", "dac", "rng", "fdcan", "hash"]
+stm32h753zi = ["embassy-stm32/stm32h753zi", "chrono", "not-gpdma", "eth", "rng", "fdcan", "hash", "cryp"]
+stm32h755zi = ["embassy-stm32/stm32h755zi-cm7", "chrono", "not-gpdma", "eth", "dac", "rng", "fdcan", "hash", "cryp"]
 stm32h7a3zi = ["embassy-stm32/stm32h7a3zi", "not-gpdma", "rng", "fdcan"]
 stm32l073rz = ["embassy-stm32/stm32l073rz", "cm0", "not-gpdma", "rng"]
 stm32l152re = ["embassy-stm32/stm32l152re", "chrono", "not-gpdma"]
@@ -33,6 +33,7 @@ stm32wl55jc = ["embassy-stm32/stm32wl55jc-cm4", "not-gpdma", "rng", "chrono"]
 stm32f091rc = ["embassy-stm32/stm32f091rc", "cm0", "not-gpdma", "chrono"]
 stm32h503rb = ["embassy-stm32/stm32h503rb", "rng"]
 
+cryp = []
 hash = []
 eth = ["embassy-executor/task-arena-size-16384"]
 rng = []
@@ -80,6 +81,7 @@ portable-atomic = { version = "1.5", features = [] }
 chrono = { version = "^0.4", default-features = false, optional = true}
 sha2 = { version = "0.10.8", default-features = false }
 hmac = "0.12.1"
+aes-gcm = {version = "0.10.3", default-features = false, features = ["aes", "heapless"] }
 
 # BEGIN TESTS
 # Generated by gen_test.py. DO NOT EDIT.
@@ -88,6 +90,11 @@ name = "can"
 path = "src/bin/can.rs"
 required-features = [ "can",]
 
+[[bin]]
+name = "cryp"
+path = "src/bin/cryp.rs"
+required-features = [ "cryp",]
+
 [[bin]]
 name = "dac"
 path = "src/bin/dac.rs"
diff --git a/tests/stm32/src/bin/cryp.rs b/tests/stm32/src/bin/cryp.rs
new file mode 100644
index 000000000..f105abf26
--- /dev/null
+++ b/tests/stm32/src/bin/cryp.rs
@@ -0,0 +1,69 @@
+// required-features: cryp
+#![no_std]
+#![no_main]
+
+#[path = "../common.rs"]
+mod common;
+
+use aes_gcm::aead::heapless::Vec;
+use aes_gcm::aead::{AeadInPlace, KeyInit};
+use aes_gcm::Aes128Gcm;
+use common::*;
+use embassy_executor::Spawner;
+use embassy_stm32::cryp::*;
+use {defmt_rtt as _, panic_probe as _};
+
+#[embassy_executor::main]
+async fn main(_spawner: Spawner) {
+    let p: embassy_stm32::Peripherals = embassy_stm32::init(config());
+
+    const PAYLOAD1: &[u8] = b"payload data 1 ;zdfhzdfhS;GKJASBDG;ASKDJBAL,zdfhzdfhzdfhzdfhvljhb,jhbjhb,sdhsdghsdhsfhsghzdfhzdfhzdfhzdfdhsdthsthsdhsgaadfhhgkdgfuoyguoft6783567";
+    const PAYLOAD2: &[u8] = b"payload data 2 ;SKEzdfhzdfhzbhgvljhb,jhbjhb,sdhsdghsdhsfhsghshsfhshstsdthadfhsdfjhsfgjsfgjxfgjzdhgDFghSDGHjtfjtjszftjzsdtjhstdsdhsdhsdhsdhsdthsthsdhsgfh";
+    const AAD1: &[u8] = b"additional data 1 stdargadrhaethaethjatjatjaetjartjstrjsfkk;'jopofyuisrteytweTASTUIKFUKIXTRDTEREharhaeryhaterjartjarthaethjrtjarthaetrhartjatejatrjsrtjartjyt1";
+    const AAD2: &[u8] = b"additional data 2 stdhthsthsthsrthsrthsrtjdykjdukdyuldadfhsdghsdghsdghsadghjk'hioethjrtjarthaetrhartjatecfgjhzdfhgzdfhzdfghzdfhzdfhzfhjatrjsrtjartjytjfytjfyg";
+
+    let hw_cryp = Cryp::new(p.CRYP);
+    let key: [u8; 16] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16];
+    let mut ciphertext: [u8; PAYLOAD1.len() + PAYLOAD2.len()] = [0; PAYLOAD1.len() + PAYLOAD2.len()];
+    let mut plaintext: [u8; PAYLOAD1.len() + PAYLOAD2.len()] = [0; PAYLOAD1.len() + PAYLOAD2.len()];
+    let iv: [u8; 12] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
+
+    // Encrypt in hardware using AES-GCM 128-bit
+    let aes_gcm = AesGcm::new(&key, &iv);
+    let mut gcm_encrypt = hw_cryp.start(&aes_gcm, Direction::Encrypt);
+    hw_cryp.aad_blocking(&mut gcm_encrypt, AAD1, false);
+    hw_cryp.aad_blocking(&mut gcm_encrypt, AAD2, true);
+    hw_cryp.payload_blocking(&mut gcm_encrypt, PAYLOAD1, &mut ciphertext[..PAYLOAD1.len()], false);
+    hw_cryp.payload_blocking(&mut gcm_encrypt, PAYLOAD2, &mut ciphertext[PAYLOAD1.len()..], true);
+    let encrypt_tag = hw_cryp.finish_blocking(gcm_encrypt);
+
+    // Decrypt in hardware using AES-GCM 128-bit
+    let mut gcm_decrypt = hw_cryp.start(&aes_gcm, Direction::Decrypt);
+    hw_cryp.aad_blocking(&mut gcm_decrypt, AAD1, false);
+    hw_cryp.aad_blocking(&mut gcm_decrypt, AAD2, true);
+    hw_cryp.payload_blocking(&mut gcm_decrypt, &ciphertext, &mut plaintext, true);
+    let decrypt_tag = hw_cryp.finish_blocking(gcm_decrypt);
+
+    info!("AES-GCM Ciphertext: {:?}", ciphertext);
+    info!("AES-GCM Plaintext: {:?}", plaintext);
+    defmt::assert!(PAYLOAD1 == &plaintext[..PAYLOAD1.len()]);
+    defmt::assert!(PAYLOAD2 == &plaintext[PAYLOAD1.len()..]);
+    defmt::assert!(encrypt_tag == decrypt_tag);
+
+    // Encrypt in software using AES-GCM 128-bit
+    let mut payload_vec: Vec<u8, { PAYLOAD1.len() + PAYLOAD2.len() + 16 }> = Vec::from_slice(&PAYLOAD1).unwrap();
+    payload_vec.extend_from_slice(&PAYLOAD2).unwrap();
+    let cipher = Aes128Gcm::new(&key.into());
+    let mut aad: Vec<u8, { AAD1.len() + AAD2.len() }> = Vec::from_slice(&AAD1).unwrap();
+    aad.extend_from_slice(&AAD2).unwrap();
+    let _ = cipher.encrypt_in_place(&iv.into(), &aad, &mut payload_vec);
+
+    defmt::assert!(ciphertext == payload_vec[0..ciphertext.len()]);
+    defmt::assert!(encrypt_tag == payload_vec[ciphertext.len()..ciphertext.len() + encrypt_tag.len()]);
+
+    // Decrypt in software using AES-GCM 128-bit
+    let _ = cipher.decrypt_in_place(&iv.into(), &aad, &mut payload_vec);
+
+    info!("Test OK");
+    cortex_m::asm::bkpt();
+}