fix issues when DAC2 present, add additional options to DMA (NOT YET WORKING with STM32H7A3ZI)

This commit is contained in:
JuliDi 2023-06-26 09:42:25 +02:00
parent 8cafaa1f3c
commit e7bc84dda8
No known key found for this signature in database
GPG key ID: E1E90AE563D09D63
3 changed files with 178 additions and 119 deletions

View file

@ -699,8 +699,8 @@ fn main() {
// SDMMCv1 uses the same channel for both directions, so just implement for RX
(("sdmmc", "RX"), quote!(crate::sdmmc::SdmmcDma)),
(("quadspi", "QUADSPI"), quote!(crate::qspi::QuadDma)),
(("dac", "CH1"), quote!(crate::dac::Dma)),
(("dac", "CH2"), quote!(crate::dac::Dma)),
(("dac", "CH1"), quote!(crate::dac::DmaCh1)),
(("dac", "CH2"), quote!(crate::dac::DmaCh2)),
]
.into();

View file

@ -171,13 +171,6 @@ pub trait DacChannel<T: Instance, Tx> {
}
Ok(())
}
/// Write `data` to the DAC channel via DMA.
///
/// `circular` sets the DMA to circular mode.
async fn write(&mut self, data: ValueArray<'_>, circular: bool) -> Result<(), Error>
where
Tx: Dma<T>;
}
/// Hold two DAC channels
@ -244,6 +237,81 @@ impl<'d, T: Instance, Tx> DacCh1<'d, T, Tx> {
});
Ok(())
}
/// Write `data` to the DAC CH1 via DMA.
///
/// To prevent delays/glitches when outputting a periodic waveform, the `circular` flag can be set.
/// This will configure a circular DMA transfer that periodically outputs the `data`.
/// Note that for performance reasons in circular mode the transfer complete interrupt is disabled.
///
/// **Important:** Channel 1 has to be configured for the DAC instance!
pub async fn write(&mut self, data: ValueArray<'_>, circular: bool) -> Result<(), Error>
where
Tx: DmaCh1<T>,
{
let channel = Channel::Ch1.index();
debug!("Writing to channel {}", channel);
// Enable DAC and DMA
T::regs().cr().modify(|w| {
w.set_en(channel, true);
w.set_dmaen(channel, true);
});
let tx_request = self.dma.request();
let dma_channel = &self.dma;
let tx_options = TransferOptions {
circular,
half_transfer_ir: false,
complete_transfer_ir: !circular,
..Default::default()
};
// Initiate the correct type of DMA transfer depending on what data is passed
let tx_f = match data {
ValueArray::Bit8(buf) => unsafe {
Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr8r(channel).as_ptr() as *mut u8,
tx_options,
)
},
ValueArray::Bit12Left(buf) => unsafe {
Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12l(channel).as_ptr() as *mut u16,
tx_options,
)
},
ValueArray::Bit12Right(buf) => unsafe {
Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12r(channel).as_ptr() as *mut u16,
tx_options,
)
},
};
tx_f.await;
// finish dma
// TODO: Do we need to check any status registers here?
T::regs().cr().modify(|w| {
// Disable the DAC peripheral
w.set_en(channel, false);
// Disable the DMA. TODO: Is this necessary?
w.set_dmaen(channel, false);
});
Ok(())
}
}
impl<'d, T: Instance, Tx> DacCh2<'d, T, Tx> {
@ -279,6 +347,81 @@ impl<'d, T: Instance, Tx> DacCh2<'d, T, Tx> {
});
Ok(())
}
/// Write `data` to the DAC CH2 via DMA.
///
/// To prevent delays/glitches when outputting a periodic waveform, the `circular` flag can be set.
/// This will configure a circular DMA transfer that periodically outputs the `data`.
/// Note that for performance reasons in circular mode the transfer complete interrupt is disabled.
///
/// **Important:** Channel 2 has to be configured for the DAC instance!
pub async fn write(&mut self, data: ValueArray<'_>, circular: bool) -> Result<(), Error>
where
Tx: DmaCh2<T>,
{
let channel = Channel::Ch2.index();
debug!("Writing to channel {}", channel);
// Enable DAC and DMA
T::regs().cr().modify(|w| {
w.set_en(channel, true);
w.set_dmaen(channel, true);
});
let tx_request = self.dma.request();
let dma_channel = &self.dma;
let tx_options = TransferOptions {
circular,
half_transfer_ir: false,
complete_transfer_ir: !circular,
..Default::default()
};
// Initiate the correct type of DMA transfer depending on what data is passed
let tx_f = match data {
ValueArray::Bit8(buf) => unsafe {
Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr8r(channel).as_ptr() as *mut u8,
tx_options,
)
},
ValueArray::Bit12Left(buf) => unsafe {
Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12l(channel).as_ptr() as *mut u16,
tx_options,
)
},
ValueArray::Bit12Right(buf) => unsafe {
Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12r(channel).as_ptr() as *mut u16,
tx_options,
)
},
};
tx_f.await;
// finish dma
// TODO: Do we need to check any status registers here?
T::regs().cr().modify(|w| {
// Disable the DAC peripheral
w.set_en(channel, false);
// Disable the DMA. TODO: Is this necessary?
w.set_dmaen(channel, false);
});
Ok(())
}
}
impl<'d, T: Instance, TxCh1, TxCh2> Dac<'d, T, TxCh1, TxCh2> {
@ -350,117 +493,10 @@ impl<'d, T: Instance, TxCh1, TxCh2> Dac<'d, T, TxCh1, TxCh2> {
impl<'d, T: Instance, Tx> DacChannel<T, Tx> for DacCh1<'d, T, Tx> {
const CHANNEL: Channel = Channel::Ch1;
/// Write `data` to the DAC CH1 via DMA.
///
/// To prevent delays/glitches when outputting a periodic waveform, the `circular` flag can be set.
/// This will configure a circular DMA transfer that periodically outputs the `data`.
/// Note that for performance reasons in circular mode the transfer complete interrupt is disabled.
///
/// **Important:** Channel 1 has to be configured for the DAC instance!
async fn write(&mut self, data: ValueArray<'_>, circular: bool) -> Result<(), Error>
where
Tx: Dma<T>,
{
write_inner(Self::CHANNEL, &self.dma, data, circular).await
}
}
impl<'d, T: Instance, Tx> DacChannel<T, Tx> for DacCh2<'d, T, Tx> {
const CHANNEL: Channel = Channel::Ch2;
/// Write `data` to the DAC CH2 via DMA.
///
/// To prevent delays/glitches when outputting a periodic waveform, the `circular` flag can be set.
/// This will configure a circular DMA transfer that periodically outputs the `data`.
/// Note that for performance reasons in circular mode the transfer complete interrupt is disabled.
///
/// **Important:** Channel 2 has to be configured for the DAC instance!
async fn write(&mut self, data: ValueArray<'_>, circular: bool) -> Result<(), Error>
where
Tx: Dma<T>,
{
write_inner(Self::CHANNEL, &self.dma, data, circular).await
}
}
/// Shared utility function to perform the actual DMA config and write.
async fn write_inner<T: Instance, Tx>(
ch: Channel,
dma: &PeripheralRef<'_, Tx>,
data: ValueArray<'_>,
circular: bool,
) -> Result<(), Error>
where
Tx: Dma<T>,
{
let channel = ch.index();
debug!("Writing to channel {}", channel);
// Enable DAC and DMA
T::regs().cr().modify(|w| {
w.set_en(channel, true);
w.set_dmaen(channel, true);
});
let tx_request = dma.request();
let dma_channel = dma;
// Initiate the correct type of DMA transfer depending on what data is passed
let tx_f = match data {
ValueArray::Bit8(buf) => unsafe {
Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr8r(channel).as_ptr() as *mut u8,
TransferOptions {
circular,
half_transfer_ir: false,
complete_transfer_ir: !circular,
},
)
},
ValueArray::Bit12Left(buf) => unsafe {
Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12l(channel).as_ptr() as *mut u16,
TransferOptions {
circular,
half_transfer_ir: false,
complete_transfer_ir: !circular,
},
)
},
ValueArray::Bit12Right(buf) => unsafe {
Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12r(channel).as_ptr() as *mut u16,
TransferOptions {
circular,
half_transfer_ir: false,
complete_transfer_ir: !circular,
},
)
},
};
tx_f.await;
// finish dma
// TODO: Do we need to check any status registers here?
T::regs().cr().modify(|w| {
// Disable the DAC peripheral
w.set_en(channel, false);
// Disable the DMA. TODO: Is this necessary?
w.set_dmaen(channel, false);
});
Ok(())
}
pub(crate) mod sealed {
@ -470,7 +506,8 @@ pub(crate) mod sealed {
}
pub trait Instance: sealed::Instance + RccPeripheral + 'static {}
dma_trait!(Dma, Instance);
dma_trait!(DmaCh1, Instance);
dma_trait!(DmaCh2, Instance);
/// Marks a pin that can be used with the DAC
pub trait DacPin<T: Instance, const C: u8>: crate::gpio::Pin + 'static {}

View file

@ -29,6 +29,12 @@ pub struct TransferOptions {
pub flow_ctrl: FlowControl,
/// FIFO threshold for DMA FIFO mode. If none, direct mode is used.
pub fifo_threshold: Option<FifoThreshold>,
/// Enable circular DMA
pub circular: bool,
/// Enable half transfer interrupt
pub half_transfer_ir: bool,
/// Enable transfer complete interrupt
pub complete_transfer_ir: bool,
}
impl Default for TransferOptions {
@ -38,6 +44,9 @@ impl Default for TransferOptions {
mburst: Burst::Single,
flow_ctrl: FlowControl::Dma,
fifo_threshold: None,
circular: false,
half_transfer_ir: false,
complete_transfer_ir: true,
}
}
}
@ -366,13 +375,20 @@ impl<'a, C: Channel> Transfer<'a, C> {
});
w.set_pinc(vals::Inc::FIXED);
w.set_teie(true);
w.set_tcie(true);
w.set_tcie(options.complete_transfer_ir);
w.set_htie(options.half_transfer_ir);
#[cfg(dma_v1)]
w.set_trbuff(true);
#[cfg(dma_v2)]
w.set_chsel(_request);
if options.circular {
w.set_circ(vals::Circ::ENABLED);
debug!("Setting circular mode");
} else {
w.set_circ(vals::Circ::DISABLED);
}
w.set_pburst(options.pburst.into());
w.set_mburst(options.mburst.into());
w.set_pfctrl(options.flow_ctrl.into());
@ -404,8 +420,14 @@ impl<'a, C: Channel> Transfer<'a, C> {
}
pub fn is_running(&mut self) -> bool {
//let ch = self.channel.regs().st(self.channel.num());
//ch.cr().read().en()
let ch = self.channel.regs().st(self.channel.num());
ch.cr().read().en()
let en = ch.cr().read().en();
let circular = ch.cr().read().circ() == vals::Circ::ENABLED;
let tcif = STATE.complete_count[self.channel.index()].load(Ordering::Acquire) != 0;
en && (circular || !tcif)
}
/// Gets the total remaining transfers for the channel