951: (embassy-rp): Implementation of generic flash mutation access r=Dirbaio a=MathiasKoch

I have attempted to utilize the work done in `rp2040-flash` by implementing `embedded-storage` traits on top, for RP2040.

Concerns:
1. ~~Should the DMA be paused where I have put a FIXME note? `DMA_CHx.ctrl_trig().write(|w| { w.set_en(false) })`? If so, how to properly do that without have control over the peripheral for the DMA channels? And if so, I assume we should only re-enable/unpause the ones that were enabled before?~~
2. ~~Should I make sure core2 is halted as part of this code? I am not sure if ea8ab1ac80/examples/flash_example.rs (L103-L109) is heavy/slow code to run?~~
3. ~~Any good way of making this configurable over `FLASH_SIZE`, `WRITE_SIZE` and `ERASE_SIZE` without doing it as generics or parameters, as those make it possible to do differing configs throughout the same program, which feels wrong? Preferably, a compile-time option?~~


**EDIT:**
I have implemented the flash API here under the assumption that all external QSPI nor flashes are infact `Multiwrite` capable, as this makes it possible to use the ROM function for writes of 1 bytes at a time.

I have also added a HIL test for this, but because HIL tests are running 100% from RAM and I wanted to make sure it still works when running from flash, I have also added an example testing erase/write cycles of entire sectors, as well as single bytes in multi-write style.

Ping `@Dirbaio` 

Co-authored-by: Mathias <mk@blackbird.online>
Co-authored-by: Vincent Stakenburg <v.stakenburg@sinewave.nl>
Co-authored-by: Joakim Hulthe <joakim@hulthe.net>
Co-authored-by: Alex Martens <alex@thinglab.org>
Co-authored-by: Ulf Lilleengen <ulf.lilleengen@gmail.com>
Co-authored-by: Dario Nieuwenhuis <dirbaio@dirbaio.net>
This commit is contained in:
bors[bot] 2022-10-28 12:19:56 +00:00 committed by GitHub
commit e7fdd500d8
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 613 additions and 1 deletions

View file

@ -54,6 +54,7 @@ critical-section = "1.1"
futures = { version = "0.3.17", default-features = false, features = ["async-await"] }
chrono = { version = "0.4", default-features = false, optional = true }
embedded-io = { version = "0.3.1", features = ["async"], optional = true }
embedded-storage = { version = "0.3" }
rp2040-pac2 = { git = "https://github.com/embassy-rs/rp2040-pac2", rev="017e3c9007b2d3b6965f0d85b5bf8ce3fa6d7364", features = ["rt"] }
#rp2040-pac2 = { path = "../../rp2040-pac2", features = ["rt"] }

View file

@ -191,7 +191,7 @@ impl<'a, C: Channel> Future for Transfer<'a, C> {
}
}
const CHANNEL_COUNT: usize = 12;
pub(crate) const CHANNEL_COUNT: usize = 12;
const NEW_AW: AtomicWaker = AtomicWaker::new();
static CHANNEL_WAKERS: [AtomicWaker; CHANNEL_COUNT] = [NEW_AW; CHANNEL_COUNT];

463
embassy-rp/src/flash.rs Normal file
View file

@ -0,0 +1,463 @@
use core::marker::PhantomData;
use embassy_hal_common::Peripheral;
use embedded_storage::nor_flash::{
check_erase, check_read, check_write, ErrorType, MultiwriteNorFlash, NorFlash, NorFlashError, NorFlashErrorKind,
ReadNorFlash,
};
use crate::peripherals::FLASH;
pub const FLASH_BASE: usize = 0x10000000;
// **NOTE**:
//
// These limitations are currently enforced because of using the
// RP2040 boot-rom flash functions, that are optimized for flash compatibility
// rather than performance.
pub const PAGE_SIZE: usize = 256;
pub const WRITE_SIZE: usize = 1;
pub const READ_SIZE: usize = 1;
pub const ERASE_SIZE: usize = 4096;
/// Error type for NVMC operations.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
/// Opration using a location not in flash.
OutOfBounds,
/// Unaligned operation or using unaligned buffers.
Unaligned,
Other,
}
impl From<NorFlashErrorKind> for Error {
fn from(e: NorFlashErrorKind) -> Self {
match e {
NorFlashErrorKind::NotAligned => Self::Unaligned,
NorFlashErrorKind::OutOfBounds => Self::OutOfBounds,
_ => Self::Other,
}
}
}
impl NorFlashError for Error {
fn kind(&self) -> NorFlashErrorKind {
match self {
Self::OutOfBounds => NorFlashErrorKind::OutOfBounds,
Self::Unaligned => NorFlashErrorKind::NotAligned,
Self::Other => NorFlashErrorKind::Other,
}
}
}
pub struct Flash<'d, T: Instance, const FLASH_SIZE: usize>(PhantomData<&'d mut T>);
impl<'d, T: Instance, const FLASH_SIZE: usize> Flash<'d, T, FLASH_SIZE> {
pub fn new(_flash: impl Peripheral<P = T> + 'd) -> Self {
Self(PhantomData)
}
pub fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Error> {
check_read(self, offset, bytes.len())?;
let flash_data = unsafe { core::slice::from_raw_parts((FLASH_BASE as u32 + offset) as *const u8, bytes.len()) };
bytes.copy_from_slice(flash_data);
Ok(())
}
pub fn capacity(&self) -> usize {
FLASH_SIZE
}
pub fn erase(&mut self, from: u32, to: u32) -> Result<(), Error> {
check_erase(self, from, to)?;
trace!(
"Erasing from 0x{:x} to 0x{:x}",
FLASH_BASE as u32 + from,
FLASH_BASE as u32 + to
);
let len = to - from;
unsafe { self.in_ram(|| ram_helpers::flash_range_erase(from, len, true)) };
Ok(())
}
pub fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Error> {
check_write(self, offset, bytes.len())?;
trace!("Writing {:?} bytes to 0x{:x}", bytes.len(), FLASH_BASE as u32 + offset);
let end_offset = offset as usize + bytes.len();
let padded_offset = (offset as *const u8).align_offset(PAGE_SIZE);
let start_padding = core::cmp::min(padded_offset, bytes.len());
// Pad in the beginning
if start_padding > 0 {
let start = PAGE_SIZE - padded_offset;
let end = start + start_padding;
let mut pad_buf = [0xFF_u8; PAGE_SIZE];
pad_buf[start..end].copy_from_slice(&bytes[..start_padding]);
let unaligned_offset = offset as usize - start;
unsafe { self.in_ram(|| ram_helpers::flash_range_program(unaligned_offset as u32, &pad_buf, true)) }
}
let remaining_len = bytes.len() - start_padding;
let end_padding = start_padding + PAGE_SIZE * (remaining_len / PAGE_SIZE);
// Write aligned slice of length in multiples of 256 bytes
// If the remaining bytes to be written is more than a full page.
if remaining_len >= PAGE_SIZE {
let mut aligned_offset = if start_padding > 0 {
offset as usize + padded_offset
} else {
offset as usize
};
if bytes.as_ptr() as usize >= 0x2000_0000 {
let aligned_data = &bytes[start_padding..end_padding];
unsafe { self.in_ram(|| ram_helpers::flash_range_program(aligned_offset as u32, aligned_data, true)) }
} else {
for chunk in bytes[start_padding..end_padding].chunks_exact(PAGE_SIZE) {
let mut ram_buf = [0xFF_u8; PAGE_SIZE];
ram_buf.copy_from_slice(chunk);
unsafe { self.in_ram(|| ram_helpers::flash_range_program(aligned_offset as u32, &ram_buf, true)) }
aligned_offset += PAGE_SIZE;
}
}
}
// Pad in the end
let rem_offset = (end_offset as *const u8).align_offset(PAGE_SIZE);
let rem_padding = remaining_len % PAGE_SIZE;
if rem_padding > 0 {
let mut pad_buf = [0xFF_u8; PAGE_SIZE];
pad_buf[..rem_padding].copy_from_slice(&bytes[end_padding..]);
let unaligned_offset = end_offset - (PAGE_SIZE - rem_offset);
unsafe { self.in_ram(|| ram_helpers::flash_range_program(unaligned_offset as u32, &pad_buf, true)) }
}
Ok(())
}
/// Make sure to uphold the contract points with rp2040-flash.
/// - interrupts must be disabled
/// - DMA must not access flash memory
unsafe fn in_ram(&mut self, operation: impl FnOnce()) {
let dma_status = &mut [false; crate::dma::CHANNEL_COUNT];
// TODO: Make sure CORE1 is paused during the entire duration of the RAM function
critical_section::with(|_| {
// Pause all DMA channels for the duration of the ram operation
for (number, status) in dma_status.iter_mut().enumerate() {
let ch = crate::pac::DMA.ch(number as _);
*status = ch.ctrl_trig().read().en();
if *status {
ch.ctrl_trig().modify(|w| w.set_en(false));
}
}
// Run our flash operation in RAM
operation();
// Re-enable previously enabled DMA channels
for (number, status) in dma_status.iter().enumerate() {
let ch = crate::pac::DMA.ch(number as _);
if *status {
ch.ctrl_trig().modify(|w| w.set_en(true));
}
}
});
}
}
impl<'d, T: Instance, const FLASH_SIZE: usize> ErrorType for Flash<'d, T, FLASH_SIZE> {
type Error = Error;
}
impl<'d, T: Instance, const FLASH_SIZE: usize> ReadNorFlash for Flash<'d, T, FLASH_SIZE> {
const READ_SIZE: usize = READ_SIZE;
fn read(&mut self, offset: u32, bytes: &mut [u8]) -> Result<(), Self::Error> {
self.read(offset, bytes)
}
fn capacity(&self) -> usize {
self.capacity()
}
}
impl<'d, T: Instance, const FLASH_SIZE: usize> MultiwriteNorFlash for Flash<'d, T, FLASH_SIZE> {}
impl<'d, T: Instance, const FLASH_SIZE: usize> NorFlash for Flash<'d, T, FLASH_SIZE> {
const WRITE_SIZE: usize = WRITE_SIZE;
const ERASE_SIZE: usize = ERASE_SIZE;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
self.erase(from, to)
}
fn write(&mut self, offset: u32, bytes: &[u8]) -> Result<(), Self::Error> {
self.write(offset, bytes)
}
}
#[allow(dead_code)]
mod ram_helpers {
use core::marker::PhantomData;
use crate::rom_data;
#[repr(C)]
struct FlashFunctionPointers<'a> {
connect_internal_flash: unsafe extern "C" fn() -> (),
flash_exit_xip: unsafe extern "C" fn() -> (),
flash_range_erase: Option<unsafe extern "C" fn(addr: u32, count: usize, block_size: u32, block_cmd: u8) -> ()>,
flash_range_program: Option<unsafe extern "C" fn(addr: u32, data: *const u8, count: usize) -> ()>,
flash_flush_cache: unsafe extern "C" fn() -> (),
flash_enter_cmd_xip: unsafe extern "C" fn() -> (),
phantom: PhantomData<&'a ()>,
}
#[allow(unused)]
fn flash_function_pointers(erase: bool, write: bool) -> FlashFunctionPointers<'static> {
FlashFunctionPointers {
connect_internal_flash: rom_data::connect_internal_flash::ptr(),
flash_exit_xip: rom_data::flash_exit_xip::ptr(),
flash_range_erase: if erase {
Some(rom_data::flash_range_erase::ptr())
} else {
None
},
flash_range_program: if write {
Some(rom_data::flash_range_program::ptr())
} else {
None
},
flash_flush_cache: rom_data::flash_flush_cache::ptr(),
flash_enter_cmd_xip: rom_data::flash_enter_cmd_xip::ptr(),
phantom: PhantomData,
}
}
#[allow(unused)]
/// # Safety
///
/// `boot2` must contain a valid 2nd stage boot loader which can be called to re-initialize XIP mode
unsafe fn flash_function_pointers_with_boot2(erase: bool, write: bool, boot2: &[u32; 64]) -> FlashFunctionPointers {
let boot2_fn_ptr = (boot2 as *const u32 as *const u8).offset(1);
let boot2_fn: unsafe extern "C" fn() -> () = core::mem::transmute(boot2_fn_ptr);
FlashFunctionPointers {
connect_internal_flash: rom_data::connect_internal_flash::ptr(),
flash_exit_xip: rom_data::flash_exit_xip::ptr(),
flash_range_erase: if erase {
Some(rom_data::flash_range_erase::ptr())
} else {
None
},
flash_range_program: if write {
Some(rom_data::flash_range_program::ptr())
} else {
None
},
flash_flush_cache: rom_data::flash_flush_cache::ptr(),
flash_enter_cmd_xip: boot2_fn,
phantom: PhantomData,
}
}
/// Erase a flash range starting at `addr` with length `len`.
///
/// `addr` and `len` must be multiples of 4096
///
/// If `use_boot2` is `true`, a copy of the 2nd stage boot loader
/// is used to re-initialize the XIP engine after flashing.
///
/// # Safety
///
/// Nothing must access flash while this is running.
/// Usually this means:
/// - interrupts must be disabled
/// - 2nd core must be running code from RAM or ROM with interrupts disabled
/// - DMA must not access flash memory
///
/// `addr` and `len` parameters must be valid and are not checked.
pub unsafe fn flash_range_erase(addr: u32, len: u32, use_boot2: bool) {
let mut boot2 = [0u32; 256 / 4];
let ptrs = if use_boot2 {
rom_data::memcpy44(&mut boot2 as *mut _, super::FLASH_BASE as *const _, 256);
flash_function_pointers_with_boot2(true, false, &boot2)
} else {
flash_function_pointers(true, false)
};
core::sync::atomic::compiler_fence(core::sync::atomic::Ordering::SeqCst);
write_flash_inner(addr, len, None, &ptrs as *const FlashFunctionPointers);
}
/// Erase and rewrite a flash range starting at `addr` with data `data`.
///
/// `addr` and `data.len()` must be multiples of 4096
///
/// If `use_boot2` is `true`, a copy of the 2nd stage boot loader
/// is used to re-initialize the XIP engine after flashing.
///
/// # Safety
///
/// Nothing must access flash while this is running.
/// Usually this means:
/// - interrupts must be disabled
/// - 2nd core must be running code from RAM or ROM with interrupts disabled
/// - DMA must not access flash memory
///
/// `addr` and `len` parameters must be valid and are not checked.
pub unsafe fn flash_range_erase_and_program(addr: u32, data: &[u8], use_boot2: bool) {
let mut boot2 = [0u32; 256 / 4];
let ptrs = if use_boot2 {
rom_data::memcpy44(&mut boot2 as *mut _, super::FLASH_BASE as *const _, 256);
flash_function_pointers_with_boot2(true, true, &boot2)
} else {
flash_function_pointers(true, true)
};
core::sync::atomic::compiler_fence(core::sync::atomic::Ordering::SeqCst);
write_flash_inner(
addr,
data.len() as u32,
Some(data),
&ptrs as *const FlashFunctionPointers,
);
}
/// Write a flash range starting at `addr` with data `data`.
///
/// `addr` and `data.len()` must be multiples of 256
///
/// If `use_boot2` is `true`, a copy of the 2nd stage boot loader
/// is used to re-initialize the XIP engine after flashing.
///
/// # Safety
///
/// Nothing must access flash while this is running.
/// Usually this means:
/// - interrupts must be disabled
/// - 2nd core must be running code from RAM or ROM with interrupts disabled
/// - DMA must not access flash memory
///
/// `addr` and `len` parameters must be valid and are not checked.
pub unsafe fn flash_range_program(addr: u32, data: &[u8], use_boot2: bool) {
let mut boot2 = [0u32; 256 / 4];
let ptrs = if use_boot2 {
rom_data::memcpy44(&mut boot2 as *mut _, super::FLASH_BASE as *const _, 256);
flash_function_pointers_with_boot2(false, true, &boot2)
} else {
flash_function_pointers(false, true)
};
core::sync::atomic::compiler_fence(core::sync::atomic::Ordering::SeqCst);
write_flash_inner(
addr,
data.len() as u32,
Some(data),
&ptrs as *const FlashFunctionPointers,
);
}
/// # Safety
///
/// Nothing must access flash while this is running.
/// Usually this means:
/// - interrupts must be disabled
/// - 2nd core must be running code from RAM or ROM with interrupts disabled
/// - DMA must not access flash memory
/// Length of data must be a multiple of 4096
/// addr must be aligned to 4096
#[inline(never)]
#[link_section = ".data.ram_func"]
unsafe fn write_flash_inner(addr: u32, len: u32, data: Option<&[u8]>, ptrs: *const FlashFunctionPointers) {
/*
Should be equivalent to:
rom_data::connect_internal_flash();
rom_data::flash_exit_xip();
rom_data::flash_range_erase(addr, len, 1 << 31, 0); // if selected
rom_data::flash_range_program(addr, data as *const _, len); // if selected
rom_data::flash_flush_cache();
rom_data::flash_enter_cmd_xip();
*/
#[cfg(target_arch = "arm")]
core::arch::asm!(
"mov r8, r0",
"mov r9, r2",
"mov r10, r1",
"ldr r4, [{ptrs}, #0]",
"blx r4", // connect_internal_flash()
"ldr r4, [{ptrs}, #4]",
"blx r4", // flash_exit_xip()
"mov r0, r8", // r0 = addr
"mov r1, r10", // r1 = len
"movs r2, #1",
"lsls r2, r2, #31", // r2 = 1 << 31
"movs r3, #0", // r3 = 0
"ldr r4, [{ptrs}, #8]",
"cmp r4, #0",
"beq 1f",
"blx r4", // flash_range_erase(addr, len, 1 << 31, 0)
"1:",
"mov r0, r8", // r0 = addr
"mov r1, r9", // r0 = data
"mov r2, r10", // r2 = len
"ldr r4, [{ptrs}, #12]",
"cmp r4, #0",
"beq 1f",
"blx r4", // flash_range_program(addr, data, len);
"1:",
"ldr r4, [{ptrs}, #16]",
"blx r4", // flash_flush_cache();
"ldr r4, [{ptrs}, #20]",
"blx r4", // flash_enter_cmd_xip();
ptrs = in(reg) ptrs,
// Registers r8-r15 are not allocated automatically,
// so assign them manually. We need to use them as
// otherwise there are not enough registers available.
in("r0") addr,
in("r2") data.map(|d| d.as_ptr()).unwrap_or(core::ptr::null()),
in("r1") len,
out("r3") _,
out("r4") _,
lateout("r8") _,
lateout("r9") _,
lateout("r10") _,
clobber_abi("C"),
);
}
}
mod sealed {
pub trait Instance {}
}
pub trait Instance: sealed::Instance {}
impl sealed::Instance for FLASH {}
impl Instance for FLASH {}

View file

@ -20,6 +20,7 @@ pub mod uart;
pub mod usb;
mod clocks;
pub mod flash;
mod reset;
// Reexports
@ -95,6 +96,8 @@ embassy_hal_common::peripherals! {
USB,
RTC,
FLASH,
}
#[link_section = ".boot2"]

View file

@ -30,6 +30,7 @@ byte-slice-cast = { version = "1.2.0", default-features = false }
embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.9" }
embedded-hal-async = { version = "0.1.0-alpha.3" }
embedded-io = { version = "0.3.1", features = ["async", "defmt"] }
embedded-storage = { version = "0.3" }
static_cell = "1.0.0"
[profile.release]

View file

@ -0,0 +1,89 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_rp::flash::{ERASE_SIZE, FLASH_BASE};
use embassy_rp::peripherals::FLASH;
use embassy_time::{Duration, Timer};
use {defmt_rtt as _, panic_probe as _};
const ADDR_OFFSET: u32 = 0x100000;
const FLASH_SIZE: usize = 2 * 1024 * 1024;
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p = embassy_rp::init(Default::default());
info!("Hello World!");
// add some delay to give an attached debug probe time to parse the
// defmt RTT header. Reading that header might touch flash memory, which
// interferes with flash write operations.
// https://github.com/knurling-rs/defmt/pull/683
Timer::after(Duration::from_millis(10)).await;
let mut flash = embassy_rp::flash::Flash::<_, FLASH_SIZE>::new(p.FLASH);
erase_write_sector(&mut flash, 0x00);
multiwrite_bytes(&mut flash, ERASE_SIZE as u32);
loop {}
}
fn multiwrite_bytes(flash: &mut embassy_rp::flash::Flash<'_, FLASH, FLASH_SIZE>, offset: u32) {
info!(">>>> [multiwrite_bytes]");
let mut read_buf = [0u8; ERASE_SIZE];
defmt::unwrap!(flash.read(ADDR_OFFSET + offset, &mut read_buf));
info!("Addr of flash block is {:x}", ADDR_OFFSET + offset + FLASH_BASE as u32);
info!("Contents start with {=[u8]}", read_buf[0..4]);
defmt::unwrap!(flash.erase(ADDR_OFFSET + offset, ADDR_OFFSET + offset + ERASE_SIZE as u32));
defmt::unwrap!(flash.read(ADDR_OFFSET + offset, &mut read_buf));
info!("Contents after erase starts with {=[u8]}", read_buf[0..4]);
if read_buf.iter().any(|x| *x != 0xFF) {
defmt::panic!("unexpected");
}
defmt::unwrap!(flash.write(ADDR_OFFSET + offset, &[0x01]));
defmt::unwrap!(flash.write(ADDR_OFFSET + offset + 1, &[0x02]));
defmt::unwrap!(flash.write(ADDR_OFFSET + offset + 2, &[0x03]));
defmt::unwrap!(flash.write(ADDR_OFFSET + offset + 3, &[0x04]));
defmt::unwrap!(flash.read(ADDR_OFFSET + offset, &mut read_buf));
info!("Contents after write starts with {=[u8]}", read_buf[0..4]);
if &read_buf[0..4] != &[0x01, 0x02, 0x03, 0x04] {
defmt::panic!("unexpected");
}
}
fn erase_write_sector(flash: &mut embassy_rp::flash::Flash<'_, FLASH, FLASH_SIZE>, offset: u32) {
info!(">>>> [erase_write_sector]");
let mut buf = [0u8; ERASE_SIZE];
defmt::unwrap!(flash.read(ADDR_OFFSET + offset, &mut buf));
info!("Addr of flash block is {:x}", ADDR_OFFSET + offset + FLASH_BASE as u32);
info!("Contents start with {=[u8]}", buf[0..4]);
defmt::unwrap!(flash.erase(ADDR_OFFSET + offset, ADDR_OFFSET + offset + ERASE_SIZE as u32));
defmt::unwrap!(flash.read(ADDR_OFFSET + offset, &mut buf));
info!("Contents after erase starts with {=[u8]}", buf[0..4]);
if buf.iter().any(|x| *x != 0xFF) {
defmt::panic!("unexpected");
}
for b in buf.iter_mut() {
*b = 0xDA;
}
defmt::unwrap!(flash.write(ADDR_OFFSET + offset, &buf));
defmt::unwrap!(flash.read(ADDR_OFFSET + offset, &mut buf));
info!("Contents after write starts with {=[u8]}", buf[0..4]);
if buf.iter().any(|x| *x != 0xDA) {
defmt::panic!("unexpected");
}
}

View file

@ -22,6 +22,7 @@ embedded-hal-async = { version = "=0.1.0-alpha.3" }
panic-probe = { version = "0.3.0", features = ["print-defmt"] }
futures = { version = "0.3.17", default-features = false, features = ["async-await"] }
embedded-io = { version = "0.3.1", features = ["async"] }
embedded-storage = { version = "0.3" }
[profile.dev]
debug = 2

54
tests/rp/src/bin/flash.rs Normal file
View file

@ -0,0 +1,54 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy_executor::Spawner;
use embassy_rp::flash::{ERASE_SIZE, FLASH_BASE};
use embassy_time::{Duration, Timer};
use {defmt_rtt as _, panic_probe as _};
const ADDR_OFFSET: u32 = 0x4000;
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let p = embassy_rp::init(Default::default());
info!("Hello World!");
// add some delay to give an attached debug probe time to parse the
// defmt RTT header. Reading that header might touch flash memory, which
// interferes with flash write operations.
// https://github.com/knurling-rs/defmt/pull/683
Timer::after(Duration::from_millis(10)).await;
let mut flash = embassy_rp::flash::Flash::<_, { 2 * 1024 * 1024 }>::new(p.FLASH);
let mut buf = [0u8; ERASE_SIZE];
defmt::unwrap!(flash.read(ADDR_OFFSET, &mut buf));
info!("Addr of flash block is {:x}", ADDR_OFFSET + FLASH_BASE as u32);
info!("Contents start with {=[u8]}", buf[0..4]);
defmt::unwrap!(flash.erase(ADDR_OFFSET, ADDR_OFFSET + ERASE_SIZE as u32));
defmt::unwrap!(flash.read(ADDR_OFFSET, &mut buf));
info!("Contents after erase starts with {=[u8]}", buf[0..4]);
if buf.iter().any(|x| *x != 0xFF) {
defmt::panic!("unexpected");
}
for b in buf.iter_mut() {
*b = 0xDA;
}
defmt::unwrap!(flash.write(ADDR_OFFSET, &mut buf));
defmt::unwrap!(flash.read(ADDR_OFFSET, &mut buf));
info!("Contents after write starts with {=[u8]}", buf[0..4]);
if buf.iter().any(|x| *x != 0xDA) {
defmt::panic!("unexpected");
}
info!("Test OK");
cortex_m::asm::bkpt();
}