rp i2c: allow blocking ops on async contexts

This commit is contained in:
Jeremy Fitzhardinge 2022-10-02 15:08:58 -07:00
parent 09afece93d
commit e8bb8faa23

View file

@ -68,106 +68,6 @@ impl<'d, T: Instance> I2c<'d, T, Blocking> {
into_ref!(scl, sda);
Self::new_inner(peri, scl.map_into(), sda.map_into(), config)
}
fn read_blocking_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> {
if buffer.is_empty() {
return Err(Error::InvalidReadBufferLength);
}
let p = T::regs();
let lastindex = buffer.len() - 1;
for (i, byte) in buffer.iter_mut().enumerate() {
let first = i == 0;
let last = i == lastindex;
// NOTE(unsafe) We have &mut self
unsafe {
// wait until there is space in the FIFO to write the next byte
while Self::tx_fifo_full() {}
p.ic_data_cmd().write(|w| {
w.set_restart(restart && first);
w.set_stop(send_stop && last);
w.set_cmd(true);
});
while Self::rx_fifo_len() == 0 {
self.read_and_clear_abort_reason()?;
}
*byte = p.ic_data_cmd().read().dat();
}
}
Ok(())
}
fn write_blocking_internal(&mut self, bytes: &[u8], send_stop: bool) -> Result<(), Error> {
if bytes.is_empty() {
return Err(Error::InvalidWriteBufferLength);
}
let p = T::regs();
for (i, byte) in bytes.iter().enumerate() {
let last = i == bytes.len() - 1;
// NOTE(unsafe) We have &mut self
unsafe {
p.ic_data_cmd().write(|w| {
w.set_stop(send_stop && last);
w.set_dat(*byte);
});
// Wait until the transmission of the address/data from the
// internal shift register has completed. For this to function
// correctly, the TX_EMPTY_CTRL flag in IC_CON must be set. The
// TX_EMPTY_CTRL flag was set in i2c_init.
while !p.ic_raw_intr_stat().read().tx_empty() {}
let abort_reason = self.read_and_clear_abort_reason();
if abort_reason.is_err() || (send_stop && last) {
// If the transaction was aborted or if it completed
// successfully wait until the STOP condition has occured.
while !p.ic_raw_intr_stat().read().stop_det() {}
p.ic_clr_stop_det().read().clr_stop_det();
}
// Note the hardware issues a STOP automatically on an abort
// condition. Note also the hardware clears RX FIFO as well as
// TX on abort, ecause we set hwparam
// IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0.
abort_reason?;
}
}
Ok(())
}
// =========================
// Blocking public API
// =========================
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.read_blocking_internal(buffer, true, true)
// Automatic Stop
}
pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.write_blocking_internal(bytes, true)
}
pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.write_blocking_internal(bytes, false)?;
self.read_blocking_internal(buffer, true, true)
// Automatic Stop
}
}
static I2C_WAKER: AtomicWaker = AtomicWaker::new();
@ -406,7 +306,7 @@ impl<'d, T: Instance> I2c<'d, T, Async> {
self.read_async_internal(buffer, false, true).await
}
pub async fn write_async(&mut self, addr: u16, bytes : impl IntoIterator<Item = u8>) -> Result<(), Error> {
pub async fn write_async(&mut self, addr: u16, bytes: impl IntoIterator<Item = u8>) -> Result<(), Error> {
Self::setup(addr)?;
self.write_async_internal(bytes, true).await
}
@ -581,12 +481,112 @@ impl<'d, T: Instance + 'd, M: Mode> I2c<'d, T, M> {
}
}
}
fn read_blocking_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> {
if buffer.is_empty() {
return Err(Error::InvalidReadBufferLength);
}
let p = T::regs();
let lastindex = buffer.len() - 1;
for (i, byte) in buffer.iter_mut().enumerate() {
let first = i == 0;
let last = i == lastindex;
// NOTE(unsafe) We have &mut self
unsafe {
// wait until there is space in the FIFO to write the next byte
while Self::tx_fifo_full() {}
p.ic_data_cmd().write(|w| {
w.set_restart(restart && first);
w.set_stop(send_stop && last);
w.set_cmd(true);
});
while Self::rx_fifo_len() == 0 {
self.read_and_clear_abort_reason()?;
}
*byte = p.ic_data_cmd().read().dat();
}
}
Ok(())
}
fn write_blocking_internal(&mut self, bytes: &[u8], send_stop: bool) -> Result<(), Error> {
if bytes.is_empty() {
return Err(Error::InvalidWriteBufferLength);
}
let p = T::regs();
for (i, byte) in bytes.iter().enumerate() {
let last = i == bytes.len() - 1;
// NOTE(unsafe) We have &mut self
unsafe {
p.ic_data_cmd().write(|w| {
w.set_stop(send_stop && last);
w.set_dat(*byte);
});
// Wait until the transmission of the address/data from the
// internal shift register has completed. For this to function
// correctly, the TX_EMPTY_CTRL flag in IC_CON must be set. The
// TX_EMPTY_CTRL flag was set in i2c_init.
while !p.ic_raw_intr_stat().read().tx_empty() {}
let abort_reason = self.read_and_clear_abort_reason();
if abort_reason.is_err() || (send_stop && last) {
// If the transaction was aborted or if it completed
// successfully wait until the STOP condition has occured.
while !p.ic_raw_intr_stat().read().stop_det() {}
p.ic_clr_stop_det().read().clr_stop_det();
}
// Note the hardware issues a STOP automatically on an abort
// condition. Note also the hardware clears RX FIFO as well as
// TX on abort, ecause we set hwparam
// IC_AVOID_RX_FIFO_FLUSH_ON_TX_ABRT to 0.
abort_reason?;
}
}
Ok(())
}
// =========================
// Blocking public API
// =========================
pub fn blocking_read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.read_blocking_internal(buffer, true, true)
// Automatic Stop
}
pub fn blocking_write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.write_blocking_internal(bytes, true)
}
pub fn blocking_write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Error> {
Self::setup(address.into())?;
self.write_blocking_internal(bytes, false)?;
self.read_blocking_internal(buffer, true, true)
// Automatic Stop
}
}
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T, Blocking> {
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Read for I2c<'d, T, M> {
type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
@ -594,7 +594,7 @@ mod eh02 {
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T, Blocking> {
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::Write for I2c<'d, T, M> {
type Error = Error;
fn write(&mut self, address: u8, bytes: &[u8]) -> Result<(), Self::Error> {
@ -602,7 +602,7 @@ mod eh02 {
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T, Blocking> {
impl<'d, T: Instance, M: Mode> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T, M> {
type Error = Error;
fn write_read(&mut self, address: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> {
@ -635,7 +635,7 @@ mod eh1 {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, Blocking> {
impl<'d, T: Instance, M: Mode> embedded_hal_1::i2c::I2c for I2c<'d, T, M> {
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}