Add remaining stm32f4 timers

This commit is contained in:
Thales Fragoso 2021-02-16 18:25:06 -03:00
parent 9d895a6383
commit fc7977bd9a

View file

@ -26,7 +26,6 @@ use crate::interrupt::{CriticalSection, Mutex, OwnedInterrupt};
// corresponds to the next period. // corresponds to the next period.
// //
// `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years. // `period` is a 32bit integer, so It overflows on 2^32 * 2^15 / 32768 seconds of uptime, which is 136 years.
fn calc_now(period: u32, counter: u16) -> u64 { fn calc_now(period: u32, counter: u16) -> u64 {
((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64) ((period as u64) << 15) + ((counter as u32 ^ ((period & 1) << 15)) as u64)
} }
@ -48,6 +47,13 @@ impl AlarmState {
// TODO: This is sometimes wasteful, try to find a better way // TODO: This is sometimes wasteful, try to find a better way
const ALARM_COUNT: usize = 3; const ALARM_COUNT: usize = 3;
/// RTC timer that can be used by the executor and to set alarms.
///
/// It can work with Timers 2, 3, 4, 5, 9 and 12. Timers 9 and 12 only have one alarm available,
/// while the others have three each.
/// This timer works internally with a unit of 2^15 ticks, which means that if a call to
/// [`embassy::time::Clock::now`] is blocked for that amount of ticks the returned value will be
/// wrong (an old value). The current default tick rate is 32768 ticks per second.
pub struct RTC<T: Instance> { pub struct RTC<T: Instance> {
rtc: T, rtc: T,
irq: T::Interrupt, irq: T::Interrupt,
@ -240,6 +246,7 @@ pub trait Instance: sealed::Sealed + Sized + 'static {
fn compare_clear_flag(&self, n: usize); fn compare_clear_flag(&self, n: usize);
fn overflow_interrupt_status(&self) -> bool; fn overflow_interrupt_status(&self) -> bool;
fn overflow_clear_flag(&self); fn overflow_clear_flag(&self);
// This method should ensure that the values are really updated before returning
fn set_psc_arr(&self, psc: u16, arr: u16); fn set_psc_arr(&self, psc: u16, arr: u16);
fn stop_and_reset(&self); fn stop_and_reset(&self);
fn start(&self); fn start(&self);
@ -248,117 +255,251 @@ pub trait Instance: sealed::Sealed + Sized + 'static {
fn pclk(clocks: &Clocks) -> u32; fn pclk(clocks: &Clocks) -> u32;
} }
mod tim2 { #[allow(unused_macros)]
use super::*; macro_rules! impl_timer {
use stm32f4xx_hal::pac::{RCC, TIM2}; ($module:ident: ($TYPE:ident, $INT:ident, $apbenr:ident, $enrbit:expr, $apbrstr:ident, $rstrbit:expr, $ppre:ident, $pclk: ident), 3) => {
mod $module {
use super::*;
use stm32f4xx_hal::pac::{$TYPE, RCC};
impl sealed::Sealed for TIM2 {} impl sealed::Sealed for $TYPE {}
impl Instance for TIM2 { impl Instance for $TYPE {
type Interrupt = interrupt::TIM2Interrupt; type Interrupt = interrupt::$INT;
const REAL_ALARM_COUNT: usize = 3; const REAL_ALARM_COUNT: usize = 3;
fn enable_clock(&self) { fn enable_clock(&self) {
// NOTE(unsafe) It will only be used for atomic operations // NOTE(unsafe) It will only be used for atomic operations
unsafe { unsafe {
let rcc = &*RCC::ptr(); let rcc = &*RCC::ptr();
bb::set(&rcc.apb1enr, 0); bb::set(&rcc.$apbenr, $enrbit);
bb::set(&rcc.apb1rstr, 0); bb::set(&rcc.$apbrstr, $rstrbit);
bb::clear(&rcc.apb1rstr, 0); bb::clear(&rcc.$apbrstr, $rstrbit);
} }
} }
fn set_compare(&self, n: usize, value: u16) { fn set_compare(&self, n: usize, value: u16) {
// NOTE(unsafe) these registers accept all the range of u16 values // NOTE(unsafe) these registers accept all the range of u16 values
match n { match n {
0 => self.ccr1.write(|w| unsafe { w.bits(value.into()) }), 0 => self.ccr1.write(|w| unsafe { w.bits(value.into()) }),
1 => self.ccr2.write(|w| unsafe { w.bits(value.into()) }), 1 => self.ccr2.write(|w| unsafe { w.bits(value.into()) }),
2 => self.ccr3.write(|w| unsafe { w.bits(value.into()) }), 2 => self.ccr3.write(|w| unsafe { w.bits(value.into()) }),
3 => self.ccr4.write(|w| unsafe { w.bits(value.into()) }), 3 => self.ccr4.write(|w| unsafe { w.bits(value.into()) }),
_ => {} _ => {}
} }
} }
fn set_compare_interrupt(&self, n: usize, enable: bool) { fn set_compare_interrupt(&self, n: usize, enable: bool) {
if n > 3 { if n > 3 {
return; return;
} }
let bit = n as u8 + 1; let bit = n as u8 + 1;
unsafe { unsafe {
if enable { if enable {
bb::set(&self.dier, bit); bb::set(&self.dier, bit);
} else { } else {
bb::clear(&self.dier, bit); bb::clear(&self.dier, bit);
}
}
}
fn compare_interrupt_status(&self, n: usize) -> bool {
let status = self.sr.read();
match n {
0 => status.cc1if().bit_is_set(),
1 => status.cc2if().bit_is_set(),
2 => status.cc3if().bit_is_set(),
3 => status.cc4if().bit_is_set(),
_ => false,
}
}
fn compare_clear_flag(&self, n: usize) {
if n > 3 {
return;
}
let bit = n as u8 + 1;
unsafe {
bb::clear(&self.sr, bit);
}
}
fn overflow_interrupt_status(&self) -> bool {
self.sr.read().uif().bit_is_set()
}
fn overflow_clear_flag(&self) {
unsafe {
bb::clear(&self.sr, 0);
}
}
fn set_psc_arr(&self, psc: u16, arr: u16) {
// NOTE(unsafe) All u16 values are valid
self.psc.write(|w| unsafe { w.bits(psc.into()) });
self.arr.write(|w| unsafe { w.bits(arr.into()) });
unsafe {
// Set URS, generate update, clear URS
bb::set(&self.cr1, 2);
self.egr.write(|w| w.ug().set_bit());
bb::clear(&self.cr1, 2);
}
}
fn stop_and_reset(&self) {
unsafe {
bb::clear(&self.cr1, 0);
}
self.cnt.reset();
}
fn start(&self) {
unsafe { bb::set(&self.cr1, 0) }
}
fn counter(&self) -> u16 {
self.cnt.read().bits() as u16
}
fn ppre(clocks: &Clocks) -> u8 {
clocks.$ppre()
}
fn pclk(clocks: &Clocks) -> u32 {
clocks.$pclk().0
} }
} }
} }
};
fn compare_interrupt_status(&self, n: usize) -> bool { ($module:ident: ($TYPE:ident, $INT:ident, $apbenr:ident, $enrbit:expr, $apbrstr:ident, $rstrbit:expr, $ppre:ident, $pclk: ident), 1) => {
let status = self.sr.read(); mod $module {
match n { use super::*;
0 => status.cc1if().bit_is_set(), use stm32f4xx_hal::pac::{$TYPE, RCC};
1 => status.cc2if().bit_is_set(),
2 => status.cc3if().bit_is_set(), impl sealed::Sealed for $TYPE {}
3 => status.cc4if().bit_is_set(),
_ => false, impl Instance for $TYPE {
type Interrupt = interrupt::$INT;
const REAL_ALARM_COUNT: usize = 1;
fn enable_clock(&self) {
// NOTE(unsafe) It will only be used for atomic operations
unsafe {
let rcc = &*RCC::ptr();
bb::set(&rcc.$apbenr, $enrbit);
bb::set(&rcc.$apbrstr, $rstrbit);
bb::clear(&rcc.$apbrstr, $rstrbit);
}
}
fn set_compare(&self, n: usize, value: u16) {
// NOTE(unsafe) these registers accept all the range of u16 values
match n {
0 => self.ccr1.write(|w| unsafe { w.bits(value.into()) }),
1 => self.ccr2.write(|w| unsafe { w.bits(value.into()) }),
_ => {}
}
}
fn set_compare_interrupt(&self, n: usize, enable: bool) {
if n > 1 {
return;
}
let bit = n as u8 + 1;
unsafe {
if enable {
bb::set(&self.dier, bit);
} else {
bb::clear(&self.dier, bit);
}
}
}
fn compare_interrupt_status(&self, n: usize) -> bool {
let status = self.sr.read();
match n {
0 => status.cc1if().bit_is_set(),
1 => status.cc2if().bit_is_set(),
_ => false,
}
}
fn compare_clear_flag(&self, n: usize) {
if n > 1 {
return;
}
let bit = n as u8 + 1;
unsafe {
bb::clear(&self.sr, bit);
}
}
fn overflow_interrupt_status(&self) -> bool {
self.sr.read().uif().bit_is_set()
}
fn overflow_clear_flag(&self) {
unsafe {
bb::clear(&self.sr, 0);
}
}
fn set_psc_arr(&self, psc: u16, arr: u16) {
// NOTE(unsafe) All u16 values are valid
self.psc.write(|w| unsafe { w.bits(psc.into()) });
self.arr.write(|w| unsafe { w.bits(arr.into()) });
unsafe {
// Set URS, generate update, clear URS
bb::set(&self.cr1, 2);
self.egr.write(|w| w.ug().set_bit());
bb::clear(&self.cr1, 2);
}
}
fn stop_and_reset(&self) {
unsafe {
bb::clear(&self.cr1, 0);
}
self.cnt.reset();
}
fn start(&self) {
unsafe { bb::set(&self.cr1, 0) }
}
fn counter(&self) -> u16 {
self.cnt.read().bits() as u16
}
fn ppre(clocks: &Clocks) -> u8 {
clocks.$ppre()
}
fn pclk(clocks: &Clocks) -> u32 {
clocks.$pclk().0
}
} }
} }
};
fn compare_clear_flag(&self, n: usize) {
if n > 3 {
return;
}
let bit = n as u8 + 1;
unsafe {
bb::clear(&self.sr, bit);
}
}
fn overflow_interrupt_status(&self) -> bool {
self.sr.read().uif().bit_is_set()
}
fn overflow_clear_flag(&self) {
unsafe {
bb::clear(&self.sr, 0);
}
}
fn set_psc_arr(&self, psc: u16, arr: u16) {
// NOTE(unsafe) All u16 values are valid
self.psc.write(|w| unsafe { w.bits(psc.into()) });
self.arr.write(|w| unsafe { w.bits(arr.into()) });
unsafe {
// Set URS, generate update, clear URS
bb::set(&self.cr1, 2);
self.egr.write(|w| w.ug().set_bit());
bb::clear(&self.cr1, 2);
}
}
fn stop_and_reset(&self) {
unsafe {
bb::clear(&self.cr1, 0);
}
self.cnt.reset();
}
fn start(&self) {
unsafe { bb::set(&self.cr1, 0) }
}
fn counter(&self) -> u16 {
self.cnt.read().bits() as u16
}
fn ppre(clocks: &Clocks) -> u8 {
clocks.ppre1()
}
fn pclk(clocks: &Clocks) -> u32 {
clocks.pclk1().0
}
}
} }
#[cfg(not(feature = "stm32f410"))]
impl_timer!(tim2: (TIM2, TIM2Interrupt, apb1enr, 0, apb1rstr, 0, ppre1, pclk1), 3);
#[cfg(not(feature = "stm32f410"))]
impl_timer!(tim3: (TIM3, TIM3Interrupt, apb1enr, 1, apb1rstr, 1, ppre1, pclk1), 3);
#[cfg(not(feature = "stm32f410"))]
impl_timer!(tim4: (TIM4, TIM4Interrupt, apb1enr, 2, apb1rstr, 2, ppre1, pclk1), 3);
impl_timer!(tim5: (TIM5, TIM5Interrupt, apb1enr, 3, apb1rstr, 3, ppre1, pclk1), 3);
impl_timer!(tim9: (TIM9, TIM1_BRK_TIM9Interrupt, apb2enr, 16, apb2rstr, 16, ppre2, pclk2), 1);
#[cfg(not(any(feature = "stm32f401", feature = "stm32f410", feature = "stm32f411")))]
impl_timer!(tim12: (TIM12, TIM8_BRK_TIM12Interrupt, apb1enr, 6, apb1rstr, 6, ppre1, pclk1), 1);