#![no_std] #![no_main] use defmt::*; use embassy_executor::Spawner; use embassy_nrf::pwm::{ Config, Prescaler, Sequence, SequenceConfig, SequenceMode, SequencePwm, Sequencer, StartSequence, }; use embassy_time::Timer; use {defmt_rtt as _, panic_probe as _}; #[embassy_executor::main] async fn main(_spawner: Spawner) { let p = embassy_nrf::init(Default::default()); let seq_words_0: [u16; 5] = [1000, 250, 100, 50, 0]; let seq_words_1: [u16; 4] = [50, 100, 250, 1000]; let mut config = Config::default(); config.prescaler = Prescaler::Div128; // 1 period is 1000 * (128/16mhz = 0.000008s = 0.008ms) = 8us // but say we want to hold the value for 5000ms // so we want to repeat our value as many times as necessary until 5000ms passes // want 5000/8 = 625 periods total to occur, so 624 (we get the one period for free remember) let mut seq_config = SequenceConfig::default(); seq_config.refresh = 624; // thus our sequence takes 5 * 5000ms or 25 seconds let mut pwm = unwrap!(SequencePwm::new_1ch(p.PWM0, p.P0_13, config)); let sequence_0 = Sequence::new(&seq_words_0, seq_config.clone()); let sequence_1 = Sequence::new(&seq_words_1, seq_config); let sequencer = Sequencer::new(&mut pwm, sequence_0, Some(sequence_1)); unwrap!(sequencer.start(StartSequence::Zero, SequenceMode::Loop(1))); // we can abort a sequence if we need to before its complete with pwm.stop() // or stop is also implicitly called when the pwm peripheral is dropped // when it goes out of scope Timer::after_millis(40000).await; info!("pwm stopped early!"); }