// required-features: rng, cordic // Test Cordic driver, with Q1.31 format, Sin function, at 24 iterations (aka PRECISION = 6), using DMA transfer // Only test on STM32H563ZI, STM32U585AI and STM32U5a5JI. // STM32G491RE is not tested, since it memory.x has less memory size than it actually has, // and the test seems use more memory than memory.x suggest. // see https://github.com/embassy-rs/stm32-data/issues/301#issuecomment-1925412561 #![no_std] #![no_main] #[path = "../common.rs"] mod common; use common::*; use embassy_executor::Spawner; use embassy_stm32::{bind_interrupts, cordic, peripherals, rng}; use num_traits::Float; use {defmt_rtt as _, panic_probe as _}; bind_interrupts!(struct Irqs { RNG => rng::InterruptHandler<peripherals::RNG>; }); /* input value control, can be changed */ const ARG1_LENGTH: usize = 9; const ARG2_LENGTH: usize = 4; // this might not be the exact length of ARG2, since ARG2 need to be inside [0, 1] const INPUT_Q1_31_LENGTH: usize = ARG1_LENGTH + ARG2_LENGTH; const INPUT_U8_LENGTH: usize = 4 * INPUT_Q1_31_LENGTH; #[embassy_executor::main] async fn main(_spawner: Spawner) { let dp = embassy_stm32::init(config()); // // use RNG generate random Q1.31 value // // we don't generate floating-point value, since not all binary value are valid floating-point value, // and Q1.31 only accept a fixed range of value. let mut rng = rng::Rng::new(dp.RNG, Irqs); let mut input_buf_u8 = [0u8; INPUT_U8_LENGTH]; defmt::unwrap!(rng.async_fill_bytes(&mut input_buf_u8).await); // convert every [u8; 4] to a u32, for a Q1.31 value let input_q1_31 = unsafe { core::mem::transmute::<[u8; INPUT_U8_LENGTH], [u32; INPUT_Q1_31_LENGTH]>(input_buf_u8) }; let mut input_f64_buf = [0f64; INPUT_Q1_31_LENGTH]; let mut cordic_output_f64_buf = [0f64; ARG1_LENGTH * 2]; // convert Q1.31 value back to f64, for software calculation verify for (val_u32, val_f64) in input_q1_31.iter().zip(input_f64_buf.iter_mut()) { *val_f64 = cordic::utils::q1_31_to_f64(*val_u32); } let mut arg2_f64_buf = [0f64; ARG2_LENGTH]; let mut arg2_f64_len = 0; // check if ARG2 is in range [0, 1] (limited by CORDIC peripheral with Sin mode) for &arg2 in &input_f64_buf[ARG1_LENGTH..] { if arg2 >= 0.0 { arg2_f64_buf[arg2_f64_len] = arg2; arg2_f64_len += 1; } } // the actual value feed to CORDIC let arg1_f64_ls = &input_f64_buf[..ARG1_LENGTH]; let arg2_f64_ls = &arg2_f64_buf[..arg2_f64_len]; let mut cordic = cordic::Cordic::new( dp.CORDIC, defmt::unwrap!(cordic::Config::new( cordic::Function::Sin, Default::default(), Default::default(), false, )), ); //#[cfg(feature = "stm32g491re")] //let (mut write_dma, mut read_dma) = (dp.DMA1_CH4, dp.DMA1_CH5); #[cfg(any(feature = "stm32h563zi", feature = "stm32u585ai", feature = "stm32u5a5zj"))] let (mut write_dma, mut read_dma) = (dp.GPDMA1_CH4, dp.GPDMA1_CH5); let cordic_start_point = embassy_time::Instant::now(); let cnt = unwrap!( cordic .async_calc_32bit( &mut write_dma, &mut read_dma, arg1_f64_ls, Some(arg2_f64_ls), &mut cordic_output_f64_buf, ) .await ); let cordic_end_point = embassy_time::Instant::now(); // since we get 2 output for 1 calculation, the output length should be ARG1_LENGTH * 2 defmt::assert!(cnt == ARG1_LENGTH * 2); let mut software_output_f64_buf = [0f64; ARG1_LENGTH * 2]; // for software calc, if there is no ARG2 value, insert a 1.0 as value (the reset value for ARG2 in CORDIC) let arg2_f64_ls = if arg2_f64_len == 0 { &[1.0] } else { arg2_f64_ls }; let software_inputs = arg1_f64_ls .iter() .zip( arg2_f64_ls .iter() .chain(core::iter::repeat(&arg2_f64_ls[arg2_f64_ls.len() - 1])), ) .zip(software_output_f64_buf.chunks_mut(2)); let software_start_point = embassy_time::Instant::now(); for ((arg1, arg2), res) in software_inputs { let (raw_res1, raw_res2) = (arg1 * core::f64::consts::PI).sin_cos(); (res[0], res[1]) = (raw_res1 * arg2, raw_res2 * arg2); } let software_end_point = embassy_time::Instant::now(); for (cordic_res, software_res) in cordic_output_f64_buf[..cnt] .chunks(2) .zip(software_output_f64_buf.chunks(2)) { for (cord_res, soft_res) in cordic_res.iter().zip(software_res.iter()) { defmt::assert!((cord_res - soft_res).abs() <= 2.0.powi(-19)); } } // This comparison is just for fun. Since it not a equal compare: // software use 64-bit floating point, but CORDIC use 32-bit fixed point. defmt::trace!( "calculate count: {}, Cordic time: {} us, software time: {} us", ARG1_LENGTH, (cordic_end_point - cordic_start_point).as_micros(), (software_end_point - software_start_point).as_micros() ); info!("Test OK"); cortex_m::asm::bkpt(); }