use crate::pac::flash::vals::Latency; #[cfg(stm32f1)] pub use crate::pac::rcc::vals::Adcpre as ADCPrescaler; #[cfg(stm32f3)] pub use crate::pac::rcc::vals::Adcpres as AdcPllPrescaler; use crate::pac::rcc::vals::Pllsrc; #[cfg(stm32f1)] pub use crate::pac::rcc::vals::Pllxtpre as PllPreDiv; #[cfg(any(stm32f0, stm32f3))] pub use crate::pac::rcc::vals::Prediv as PllPreDiv; pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Pllmul as PllMul, Ppre as APBPrescaler, Sw as Sysclk}; use crate::pac::{FLASH, RCC}; use crate::time::Hertz; /// HSI speed pub const HSI_FREQ: Hertz = Hertz(8_000_000); #[derive(Clone, Copy, Eq, PartialEq)] pub enum HseMode { /// crystal/ceramic oscillator (HSEBYP=0) Oscillator, /// external analog clock (low swing) (HSEBYP=1) Bypass, } #[derive(Clone, Copy, Eq, PartialEq)] pub struct Hse { /// HSE frequency. pub freq: Hertz, /// HSE mode. pub mode: HseMode, } #[derive(Clone, Copy, Eq, PartialEq)] pub enum PllSource { HSE, HSI, #[cfg(rcc_f0v4)] HSI48, } #[derive(Clone, Copy)] pub struct Pll { pub src: PllSource, /// PLL pre-divider. /// /// On some chips, this must be 2 if `src == HSI`. Init will panic if this is not the case. pub prediv: PllPreDiv, /// PLL multiplication factor. pub mul: PllMul, } #[cfg(all(stm32f3, not(rcc_f37)))] #[derive(Clone, Copy)] pub enum AdcClockSource { Pll(AdcPllPrescaler), Hclk(AdcHclkPrescaler), } #[cfg(all(stm32f3, not(rcc_f37)))] #[derive(Clone, Copy, PartialEq, Eq)] pub enum AdcHclkPrescaler { Div1, Div2, Div4, } #[cfg(stm32f334)] #[derive(Clone, Copy, PartialEq, Eq)] pub enum HrtimClockSource { BusClk, PllClk, } /// Clocks configutation #[non_exhaustive] pub struct Config { pub hsi: bool, pub hse: Option<Hse>, #[cfg(crs)] pub hsi48: Option<super::Hsi48Config>, pub sys: Sysclk, pub pll: Option<Pll>, pub ahb_pre: AHBPrescaler, pub apb1_pre: APBPrescaler, #[cfg(not(stm32f0))] pub apb2_pre: APBPrescaler, #[cfg(stm32f1)] pub adc_pre: ADCPrescaler, #[cfg(all(stm32f3, not(rcc_f37)))] pub adc: AdcClockSource, #[cfg(all(stm32f3, not(rcc_f37), adc3_common))] pub adc34: AdcClockSource, /// Per-peripheral kernel clock selection muxes pub mux: super::mux::ClockMux, pub ls: super::LsConfig, } impl Default for Config { fn default() -> Self { Self { hsi: true, hse: None, #[cfg(crs)] hsi48: Some(Default::default()), sys: Sysclk::HSI, pll: None, ahb_pre: AHBPrescaler::DIV1, apb1_pre: APBPrescaler::DIV1, #[cfg(not(stm32f0))] apb2_pre: APBPrescaler::DIV1, ls: Default::default(), #[cfg(stm32f1)] // ensure ADC is not out of range by default even if APB2 is maxxed out (36mhz) adc_pre: ADCPrescaler::DIV6, #[cfg(all(stm32f3, not(rcc_f37)))] adc: AdcClockSource::Hclk(AdcHclkPrescaler::Div1), #[cfg(all(stm32f3, not(rcc_f37), adc3_common))] adc34: AdcClockSource::Hclk(AdcHclkPrescaler::Div1), mux: Default::default(), } } } /// Initialize and Set the clock frequencies pub(crate) unsafe fn init(config: Config) { // Turn on the HSI RCC.cr().modify(|w| w.set_hsion(true)); while !RCC.cr().read().hsirdy() {} // Use the HSI clock as system clock during the actual clock setup RCC.cfgr().modify(|w| w.set_sw(Sysclk::HSI)); while RCC.cfgr().read().sws() != Sysclk::HSI {} // Configure HSI let hsi = match config.hsi { false => None, true => Some(HSI_FREQ), }; // Configure HSE let hse = match config.hse { None => { RCC.cr().modify(|w| w.set_hseon(false)); None } Some(hse) => { match hse.mode { HseMode::Bypass => assert!(max::HSE_BYP.contains(&hse.freq)), HseMode::Oscillator => assert!(max::HSE_OSC.contains(&hse.freq)), } RCC.cr().modify(|w| w.set_hsebyp(hse.mode != HseMode::Oscillator)); RCC.cr().modify(|w| w.set_hseon(true)); while !RCC.cr().read().hserdy() {} Some(hse.freq) } }; // configure HSI48 #[cfg(crs)] let hsi48 = config.hsi48.map(|config| super::init_hsi48(config)); #[cfg(not(crs))] let hsi48: Option<Hertz> = None; // Enable PLL let pll = config.pll.map(|pll| { let (src_val, src_freq) = match pll.src { #[cfg(any(rcc_f0v3, rcc_f0v4, rcc_f3v3))] PllSource::HSI => (Pllsrc::HSI_DIV_PREDIV, unwrap!(hsi)), #[cfg(not(any(rcc_f0v3, rcc_f0v4, rcc_f3v3)))] PllSource::HSI => { if pll.prediv != PllPreDiv::DIV2 { panic!("if PLL source is HSI, PLL prediv must be 2."); } (Pllsrc::HSI_DIV2, unwrap!(hsi)) } PllSource::HSE => (Pllsrc::HSE_DIV_PREDIV, unwrap!(hse)), #[cfg(rcc_f0v4)] PllSource::HSI48 => (Pllsrc::HSI48_DIV_PREDIV, unwrap!(hsi48)), }; let in_freq = src_freq / pll.prediv; assert!(max::PLL_IN.contains(&in_freq)); let out_freq = in_freq * pll.mul; assert!(max::PLL_OUT.contains(&out_freq)); #[cfg(not(stm32f1))] RCC.cfgr2().modify(|w| w.set_prediv(pll.prediv)); RCC.cfgr().modify(|w| { w.set_pllmul(pll.mul); w.set_pllsrc(src_val); #[cfg(stm32f1)] w.set_pllxtpre(pll.prediv); }); RCC.cr().modify(|w| w.set_pllon(true)); while !RCC.cr().read().pllrdy() {} out_freq }); #[cfg(stm32f3)] let pll_mul_2 = pll.map(|pll| pll * 2u32); #[cfg(any(rcc_f1, rcc_f1cl, stm32f3))] let usb = match pll { Some(Hertz(72_000_000)) => Some(crate::pac::rcc::vals::Usbpre::DIV1_5), Some(Hertz(48_000_000)) => Some(crate::pac::rcc::vals::Usbpre::DIV1), _ => None, } .map(|usbpre| { RCC.cfgr().modify(|w| w.set_usbpre(usbpre)); Hertz(48_000_000) }); // Configure sysclk let sys = match config.sys { Sysclk::HSI => unwrap!(hsi), Sysclk::HSE => unwrap!(hse), Sysclk::PLL1_P => unwrap!(pll), _ => unreachable!(), }; let hclk = sys / config.ahb_pre; let (pclk1, pclk1_tim) = super::util::calc_pclk(hclk, config.apb1_pre); #[cfg(not(stm32f0))] let (pclk2, pclk2_tim) = super::util::calc_pclk(hclk, config.apb2_pre); #[cfg(stm32f0)] let (pclk2, pclk2_tim) = (pclk1, pclk1_tim); assert!(max::HCLK.contains(&hclk)); assert!(max::PCLK1.contains(&pclk1)); #[cfg(not(stm32f0))] assert!(max::PCLK2.contains(&pclk2)); #[cfg(stm32f1)] let adc = pclk2 / config.adc_pre; #[cfg(stm32f1)] assert!(max::ADC.contains(&adc)); // Set latency based on HCLK frquency #[cfg(stm32f0)] let latency = match hclk.0 { ..=24_000_000 => Latency::WS0, _ => Latency::WS1, }; #[cfg(any(stm32f1, stm32f3))] let latency = match hclk.0 { ..=24_000_000 => Latency::WS0, ..=48_000_000 => Latency::WS1, _ => Latency::WS2, }; FLASH.acr().modify(|w| { w.set_latency(latency); // RM0316: "The prefetch buffer must be kept on when using a prescaler // different from 1 on the AHB clock.", "Half-cycle access cannot be // used when there is a prescaler different from 1 on the AHB clock" #[cfg(stm32f3)] if config.ahb_pre != AHBPrescaler::DIV1 { w.set_hlfcya(false); w.set_prftbe(true); } #[cfg(not(stm32f3))] w.set_prftbe(true); }); // Set prescalers // CFGR has been written before (PLL, PLL48) don't overwrite these settings RCC.cfgr().modify(|w| { #[cfg(not(stm32f0))] { w.set_ppre1(config.apb1_pre); w.set_ppre2(config.apb2_pre); } #[cfg(stm32f0)] w.set_ppre(config.apb1_pre); w.set_hpre(config.ahb_pre); #[cfg(stm32f1)] w.set_adcpre(config.adc_pre); }); // Wait for the new prescalers to kick in // "The clocks are divided with the new prescaler factor from // 1 to 16 AHB cycles after write" cortex_m::asm::delay(16); // CFGR has been written before (PLL, PLL48, clock divider) don't overwrite these settings RCC.cfgr().modify(|w| w.set_sw(config.sys)); while RCC.cfgr().read().sws() != config.sys {} // Disable HSI if not used if !config.hsi { RCC.cr().modify(|w| w.set_hsion(false)); } let rtc = config.ls.init(); // TODO: all this ADC stuff should probably go into the ADC module, not here. // Most STM32s manage ADC clocks in a similar way with ADCx_COMMON. #[cfg(all(stm32f3, not(rcc_f37)))] use crate::pac::adccommon::vals::Ckmode; #[cfg(all(stm32f3, not(rcc_f37)))] let adc = { #[cfg(peri_adc1_common)] let common = crate::pac::ADC1_COMMON; #[cfg(peri_adc12_common)] let common = crate::pac::ADC12_COMMON; match config.adc { AdcClockSource::Pll(adcpres) => { RCC.cfgr2().modify(|w| w.set_adc12pres(adcpres)); common.ccr().modify(|w| w.set_ckmode(Ckmode::ASYNCHRONOUS)); unwrap!(pll) / adcpres } AdcClockSource::Hclk(adcpres) => { assert!(!(adcpres == AdcHclkPrescaler::Div1 && config.ahb_pre != AHBPrescaler::DIV1)); let (div, ckmode) = match adcpres { AdcHclkPrescaler::Div1 => (1u32, Ckmode::SYNCDIV1), AdcHclkPrescaler::Div2 => (2u32, Ckmode::SYNCDIV2), AdcHclkPrescaler::Div4 => (4u32, Ckmode::SYNCDIV4), }; common.ccr().modify(|w| w.set_ckmode(ckmode)); hclk / div } } }; #[cfg(all(stm32f3, not(rcc_f37), adc3_common))] let adc34 = { #[cfg(peri_adc3_common)] let common = crate::pac::ADC3_COMMON; #[cfg(peri_adc34_common)] let common = crate::pac::ADC34_COMMON; match config.adc34 { AdcClockSource::Pll(adcpres) => { RCC.cfgr2().modify(|w| w.set_adc34pres(adcpres)); common.ccr().modify(|w| w.set_ckmode(Ckmode::ASYNCHRONOUS)); unwrap!(pll) / adcpres } AdcClockSource::Hclk(adcpres) => { assert!(!(adcpres == AdcHclkPrescaler::Div1 && config.ahb_pre != AHBPrescaler::DIV1)); let (div, ckmode) = match adcpres { AdcHclkPrescaler::Div1 => (1u32, Ckmode::SYNCDIV1), AdcHclkPrescaler::Div2 => (2u32, Ckmode::SYNCDIV2), AdcHclkPrescaler::Div4 => (4u32, Ckmode::SYNCDIV4), }; common.ccr().modify(|w| w.set_ckmode(ckmode)); hclk / div } } }; /* TODO: Maybe add something like this to clock_mux? How can we autogenerate the data for this? let hrtim = match config.hrtim { // Must be configured after the bus is ready, otherwise it won't work HrtimClockSource::BusClk => None, HrtimClockSource::PllClk => { use crate::pac::rcc::vals::Timsw; // Make sure that we're using the PLL let pll = unwrap!(pll); assert!((pclk2 == pll) || (pclk2 * 2u32 == pll)); RCC.cfgr3().modify(|w| w.set_hrtim1sw(Timsw::PLL1_P)); Some(pll * 2u32) } }; */ config.mux.init(); set_clocks!( hsi: hsi, hse: hse, pll1_p: pll, #[cfg(stm32f3)] pll1_p_mul_2: pll_mul_2, hsi_div_244: hsi.map(|h| h / 244u32), sys: Some(sys), pclk1: Some(pclk1), pclk2: Some(pclk2), pclk1_tim: Some(pclk1_tim), pclk2_tim: Some(pclk2_tim), hclk1: Some(hclk), #[cfg(all(stm32f3, not(rcc_f37)))] adc: Some(adc), #[cfg(all(stm32f3, not(rcc_f37), adc3_common))] adc34: Some(adc34), rtc: rtc, hsi48: hsi48, #[cfg(any(rcc_f1, rcc_f1cl, stm32f3))] usb: usb, lse: None, ); } #[cfg(stm32f0)] mod max { use core::ops::RangeInclusive; use crate::time::Hertz; pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(32_000_000); pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(32_000_000); pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000); pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(48_000_000); pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(24_000_000); pub(crate) const PLL_OUT: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(48_000_000); } #[cfg(stm32f1)] mod max { use core::ops::RangeInclusive; use crate::time::Hertz; #[cfg(not(rcc_f1cl))] pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(16_000_000); #[cfg(not(rcc_f1cl))] pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(25_000_000); #[cfg(rcc_f1cl)] pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(3_000_000)..=Hertz(25_000_000); #[cfg(rcc_f1cl)] pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(50_000_000); pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000); pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(36_000_000); pub(crate) const PCLK2: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000); pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(25_000_000); pub(crate) const PLL_OUT: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(72_000_000); pub(crate) const ADC: RangeInclusive<Hertz> = Hertz(0)..=Hertz(14_000_000); } #[cfg(stm32f3)] mod max { use core::ops::RangeInclusive; use crate::time::Hertz; pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(32_000_000); pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(32_000_000); pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000); pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(36_000_000); pub(crate) const PCLK2: RangeInclusive<Hertz> = Hertz(0)..=Hertz(72_000_000); pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(24_000_000); pub(crate) const PLL_OUT: RangeInclusive<Hertz> = Hertz(16_000_000)..=Hertz(72_000_000); }