// Copyright Charles Wade (https://github.com/mr-glt/sx127x_lora). Licensed under the Apache 2.0
// license
//
// Modifications made to make the driver work with the rust-lorawan link layer.

#![allow(dead_code)]

use bit_field::BitField;
use embassy_time::{Duration, Timer};
use embedded_hal::digital::v2::OutputPin;
use embedded_hal_async::spi::SpiBus;

mod register;
pub use self::register::IRQ;
use self::register::{PaConfig, Register};

/// Provides high-level access to Semtech SX1276/77/78/79 based boards connected to a Raspberry Pi
pub struct LoRa<SPI, CS, RESET> {
    spi: SPI,
    cs: CS,
    reset: RESET,
    pub explicit_header: bool,
    pub mode: RadioMode,
}

#[allow(clippy::upper_case_acronyms)]
#[derive(Debug)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error<SPI, CS, RESET> {
    Uninformative,
    VersionMismatch(u8),
    CS(CS),
    Reset(RESET),
    SPI(SPI),
    Transmitting,
}

use Error::*;

use super::sx127x_lora::register::{FskDataModulationShaping, FskRampUpRamDown};

#[cfg(not(feature = "version_0x09"))]
const VERSION_CHECK: u8 = 0x12;

#[cfg(feature = "version_0x09")]
const VERSION_CHECK: u8 = 0x09;

impl<SPI, CS, RESET, E> LoRa<SPI, CS, RESET>
where
    SPI: SpiBus<u8, Error = E>,
    CS: OutputPin,
    RESET: OutputPin,
{
    /// Builds and returns a new instance of the radio. Only one instance of the radio should exist at a time.
    /// This also preforms a hardware reset of the module and then puts it in standby.
    pub fn new(spi: SPI, cs: CS, reset: RESET) -> Self {
        Self {
            spi,
            cs,
            reset,
            explicit_header: true,
            mode: RadioMode::Sleep,
        }
    }

    pub async fn reset(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        self.reset.set_low().map_err(Reset)?;
        Timer::after(Duration::from_millis(10)).await;
        self.reset.set_high().map_err(Reset)?;
        Timer::after(Duration::from_millis(10)).await;
        let version = self.read_register(Register::RegVersion.addr()).await?;
        if version == VERSION_CHECK {
            self.set_mode(RadioMode::Sleep).await?;
            self.write_register(Register::RegFifoTxBaseAddr.addr(), 0).await?;
            self.write_register(Register::RegFifoRxBaseAddr.addr(), 0).await?;
            let lna = self.read_register(Register::RegLna.addr()).await?;
            self.write_register(Register::RegLna.addr(), lna | 0x03).await?;
            self.write_register(Register::RegModemConfig3.addr(), 0x04).await?;
            self.set_tcxo(true).await?;
            self.set_mode(RadioMode::Stdby).await?;
            self.cs.set_high().map_err(CS)?;
            Ok(())
        } else {
            Err(Error::VersionMismatch(version))
        }
    }

    pub async fn set_dio0_tx_done(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        self.write_register(Register::RegIrqFlagsMask.addr(), 0b1111_0111)
            .await?;
        let mapping = self.read_register(Register::RegDioMapping1.addr()).await?;
        self.write_register(Register::RegDioMapping1.addr(), (mapping & 0x3F) | 0x40)
            .await
    }

    pub async fn set_dio0_rx_done(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        self.write_register(Register::RegIrqFlagsMask.addr(), 0b0001_1111)
            .await?;
        let mapping = self.read_register(Register::RegDioMapping1.addr()).await?;
        self.write_register(Register::RegDioMapping1.addr(), mapping & 0x3F)
            .await
    }

    pub async fn transmit_start(&mut self, buffer: &[u8]) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        assert!(buffer.len() < 255);
        if self.transmitting().await? {
            //trace!("ALREADY TRANSMNITTING");
            Err(Transmitting)
        } else {
            self.set_mode(RadioMode::Stdby).await?;
            if self.explicit_header {
                self.set_explicit_header_mode().await?;
            } else {
                self.set_implicit_header_mode().await?;
            }

            self.write_register(Register::RegIrqFlags.addr(), 0).await?;
            self.write_register(Register::RegFifoAddrPtr.addr(), 0).await?;
            self.write_register(Register::RegPayloadLength.addr(), 0).await?;
            for byte in buffer.iter() {
                self.write_register(Register::RegFifo.addr(), *byte).await?;
            }
            self.write_register(Register::RegPayloadLength.addr(), buffer.len() as u8)
                .await?;
            self.set_mode(RadioMode::Tx).await?;
            Ok(())
        }
    }

    pub async fn packet_ready(&mut self) -> Result<bool, Error<E, CS::Error, RESET::Error>> {
        Ok(self.read_register(Register::RegIrqFlags.addr()).await?.get_bit(6))
    }

    pub async fn irq_flags_mask(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
        Ok(self.read_register(Register::RegIrqFlagsMask.addr()).await? as u8)
    }

    pub async fn irq_flags(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
        Ok(self.read_register(Register::RegIrqFlags.addr()).await? as u8)
    }

    pub async fn read_packet_size(&mut self) -> Result<usize, Error<E, CS::Error, RESET::Error>> {
        let size = self.read_register(Register::RegRxNbBytes.addr()).await?;
        Ok(size as usize)
    }

    /// Returns the contents of the fifo as a fixed 255 u8 array. This should only be called is there is a
    /// new packet ready to be read.
    pub async fn read_packet(&mut self, buffer: &mut [u8]) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        self.clear_irq().await?;
        let size = self.read_register(Register::RegRxNbBytes.addr()).await?;
        assert!(size as usize <= buffer.len());
        let fifo_addr = self.read_register(Register::RegFifoRxCurrentAddr.addr()).await?;
        self.write_register(Register::RegFifoAddrPtr.addr(), fifo_addr).await?;
        for i in 0..size {
            let byte = self.read_register(Register::RegFifo.addr()).await?;
            buffer[i as usize] = byte;
        }
        self.write_register(Register::RegFifoAddrPtr.addr(), 0).await?;
        Ok(())
    }

    /// Returns true if the radio is currently transmitting a packet.
    pub async fn transmitting(&mut self) -> Result<bool, Error<E, CS::Error, RESET::Error>> {
        if (self.read_register(Register::RegOpMode.addr()).await?) & RadioMode::Tx.addr() == RadioMode::Tx.addr() {
            Ok(true)
        } else {
            if (self.read_register(Register::RegIrqFlags.addr()).await? & IRQ::IrqTxDoneMask.addr()) == 1 {
                self.write_register(Register::RegIrqFlags.addr(), IRQ::IrqTxDoneMask.addr())
                    .await?;
            }
            Ok(false)
        }
    }

    /// Clears the radio's IRQ registers.
    pub async fn clear_irq(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
        let irq_flags = self.read_register(Register::RegIrqFlags.addr()).await?;
        self.write_register(Register::RegIrqFlags.addr(), 0xFF).await?;
        Ok(irq_flags)
    }

    /// Sets the transmit power and pin. Levels can range from 0-14 when the output
    /// pin = 0(RFO), and form 0-20 when output pin = 1(PaBoost). Power is in dB.
    /// Default value is `17`.
    pub async fn set_tx_power(
        &mut self,
        mut level: i32,
        output_pin: u8,
    ) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        if PaConfig::PaOutputRfoPin.addr() == output_pin {
            // RFO
            if level < 0 {
                level = 0;
            } else if level > 14 {
                level = 14;
            }
            self.write_register(Register::RegPaConfig.addr(), (0x70 | level) as u8)
                .await
        } else {
            // PA BOOST
            if level > 17 {
                if level > 20 {
                    level = 20;
                }
                // subtract 3 from level, so 18 - 20 maps to 15 - 17
                level -= 3;

                // High Power +20 dBm Operation (Semtech SX1276/77/78/79 5.4.3.)
                self.write_register(Register::RegPaDac.addr(), 0x87).await?;
                self.set_ocp(140).await?;
            } else {
                if level < 2 {
                    level = 2;
                }
                //Default value PA_HF/LF or +17dBm
                self.write_register(Register::RegPaDac.addr(), 0x84).await?;
                self.set_ocp(100).await?;
            }
            level -= 2;
            self.write_register(Register::RegPaConfig.addr(), PaConfig::PaBoost.addr() | level as u8)
                .await
        }
    }

    pub async fn get_modem_stat(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
        Ok(self.read_register(Register::RegModemStat.addr()).await? as u8)
    }

    /// Sets the over current protection on the radio(mA).
    pub async fn set_ocp(&mut self, ma: u8) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        let mut ocp_trim: u8 = 27;

        if ma <= 120 {
            ocp_trim = (ma - 45) / 5;
        } else if ma <= 240 {
            ocp_trim = (ma + 30) / 10;
        }
        self.write_register(Register::RegOcp.addr(), 0x20 | (0x1F & ocp_trim))
            .await
    }

    /// Sets the state of the radio. Default mode after initiation is `Standby`.
    pub async fn set_mode(&mut self, mode: RadioMode) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        if self.explicit_header {
            self.set_explicit_header_mode().await?;
        } else {
            self.set_implicit_header_mode().await?;
        }
        self.write_register(
            Register::RegOpMode.addr(),
            RadioMode::LongRangeMode.addr() | mode.addr(),
        )
        .await?;

        self.mode = mode;
        Ok(())
    }

    pub async fn reset_payload_length(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        self.write_register(Register::RegPayloadLength.addr(), 0xFF).await
    }

    /// Sets the frequency of the radio. Values are in megahertz.
    /// I.E. 915 MHz must be used for North America. Check regulation for your area.
    pub async fn set_frequency(&mut self, freq: u32) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        const FREQ_STEP: f64 = 61.03515625;
        // calculate register values
        let frf = (freq as f64 / FREQ_STEP) as u32;
        // write registers
        self.write_register(Register::RegFrfMsb.addr(), ((frf & 0x00FF_0000) >> 16) as u8)
            .await?;
        self.write_register(Register::RegFrfMid.addr(), ((frf & 0x0000_FF00) >> 8) as u8)
            .await?;
        self.write_register(Register::RegFrfLsb.addr(), (frf & 0x0000_00FF) as u8)
            .await
    }

    /// Sets the radio to use an explicit header. Default state is `ON`.
    async fn set_explicit_header_mode(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        let reg_modem_config_1 = self.read_register(Register::RegModemConfig1.addr()).await?;
        self.write_register(Register::RegModemConfig1.addr(), reg_modem_config_1 & 0xfe)
            .await?;
        self.explicit_header = true;
        Ok(())
    }

    /// Sets the radio to use an implicit header. Default state is `OFF`.
    async fn set_implicit_header_mode(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        let reg_modem_config_1 = self.read_register(Register::RegModemConfig1.addr()).await?;
        self.write_register(Register::RegModemConfig1.addr(), reg_modem_config_1 & 0x01)
            .await?;
        self.explicit_header = false;
        Ok(())
    }

    /// Sets the spreading factor of the radio. Supported values are between 6 and 12.
    /// If a spreading factor of 6 is set, implicit header mode must be used to transmit
    /// and receive packets. Default value is `7`.
    pub async fn set_spreading_factor(&mut self, mut sf: u8) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        if sf < 6 {
            sf = 6;
        } else if sf > 12 {
            sf = 12;
        }

        if sf == 6 {
            self.write_register(Register::RegDetectionOptimize.addr(), 0xc5).await?;
            self.write_register(Register::RegDetectionThreshold.addr(), 0x0c)
                .await?;
        } else {
            self.write_register(Register::RegDetectionOptimize.addr(), 0xc3).await?;
            self.write_register(Register::RegDetectionThreshold.addr(), 0x0a)
                .await?;
        }
        let modem_config_2 = self.read_register(Register::RegModemConfig2.addr()).await?;
        self.write_register(
            Register::RegModemConfig2.addr(),
            (modem_config_2 & 0x0f) | ((sf << 4) & 0xf0),
        )
        .await?;
        self.set_ldo_flag().await?;

        self.write_register(Register::RegSymbTimeoutLsb.addr(), 0x05).await?;

        Ok(())
    }

    pub async fn set_tcxo(&mut self, external: bool) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        if external {
            self.write_register(Register::RegTcxo.addr(), 0x10).await
        } else {
            self.write_register(Register::RegTcxo.addr(), 0x00).await
        }
    }

    /// Sets the signal bandwidth of the radio. Supported values are: `7800 Hz`, `10400 Hz`,
    /// `15600 Hz`, `20800 Hz`, `31250 Hz`,`41700 Hz` ,`62500 Hz`,`125000 Hz` and `250000 Hz`
    /// Default value is `125000 Hz`
    pub async fn set_signal_bandwidth(&mut self, sbw: i64) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        let bw: i64 = match sbw {
            7_800 => 0,
            10_400 => 1,
            15_600 => 2,
            20_800 => 3,
            31_250 => 4,
            41_700 => 5,
            62_500 => 6,
            125_000 => 7,
            250_000 => 8,
            _ => 9,
        };
        let modem_config_1 = self.read_register(Register::RegModemConfig1.addr()).await?;
        self.write_register(
            Register::RegModemConfig1.addr(),
            (modem_config_1 & 0x0f) | ((bw << 4) as u8),
        )
        .await?;
        self.set_ldo_flag().await?;
        Ok(())
    }

    /// Sets the coding rate of the radio with the numerator fixed at 4. Supported values
    /// are between `5` and `8`, these correspond to coding rates of `4/5` and `4/8`.
    /// Default value is `5`.
    pub async fn set_coding_rate_4(&mut self, mut denominator: u8) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        if denominator < 5 {
            denominator = 5;
        } else if denominator > 8 {
            denominator = 8;
        }
        let cr = denominator - 4;
        let modem_config_1 = self.read_register(Register::RegModemConfig1.addr()).await?;
        self.write_register(Register::RegModemConfig1.addr(), (modem_config_1 & 0xf1) | (cr << 1))
            .await
    }

    /// Sets the preamble length of the radio. Values are between 6 and 65535.
    /// Default value is `8`.
    pub async fn set_preamble_length(&mut self, length: i64) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        self.write_register(Register::RegPreambleMsb.addr(), (length >> 8) as u8)
            .await?;
        self.write_register(Register::RegPreambleLsb.addr(), length as u8).await
    }

    /// Enables are disables the radio's CRC check. Default value is `false`.
    pub async fn set_crc(&mut self, value: bool) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        let modem_config_2 = self.read_register(Register::RegModemConfig2.addr()).await?;
        if value {
            self.write_register(Register::RegModemConfig2.addr(), modem_config_2 | 0x04)
                .await
        } else {
            self.write_register(Register::RegModemConfig2.addr(), modem_config_2 & 0xfb)
                .await
        }
    }

    /// Inverts the radio's IQ signals. Default value is `false`.
    pub async fn set_invert_iq(&mut self, value: bool) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        if value {
            self.write_register(Register::RegInvertiq.addr(), 0x66).await?;
            self.write_register(Register::RegInvertiq2.addr(), 0x19).await
        } else {
            self.write_register(Register::RegInvertiq.addr(), 0x27).await?;
            self.write_register(Register::RegInvertiq2.addr(), 0x1d).await
        }
    }

    /// Returns the spreading factor of the radio.
    pub async fn get_spreading_factor(&mut self) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
        Ok(self.read_register(Register::RegModemConfig2.addr()).await? >> 4)
    }

    /// Returns the signal bandwidth of the radio.
    pub async fn get_signal_bandwidth(&mut self) -> Result<i64, Error<E, CS::Error, RESET::Error>> {
        let bw = self.read_register(Register::RegModemConfig1.addr()).await? >> 4;
        let bw = match bw {
            0 => 7_800,
            1 => 10_400,
            2 => 15_600,
            3 => 20_800,
            4 => 31_250,
            5 => 41_700,
            6 => 62_500,
            7 => 125_000,
            8 => 250_000,
            9 => 500_000,
            _ => -1,
        };
        Ok(bw)
    }

    /// Returns the RSSI of the last received packet.
    pub async fn get_packet_rssi(&mut self) -> Result<i32, Error<E, CS::Error, RESET::Error>> {
        Ok(i32::from(self.read_register(Register::RegPktRssiValue.addr()).await?) - 157)
    }

    /// Returns the signal to noise radio of the the last received packet.
    pub async fn get_packet_snr(&mut self) -> Result<f64, Error<E, CS::Error, RESET::Error>> {
        Ok(f64::from(self.read_register(Register::RegPktSnrValue.addr()).await?))
    }

    /// Returns the frequency error of the last received packet in Hz.
    pub async fn get_packet_frequency_error(&mut self) -> Result<i64, Error<E, CS::Error, RESET::Error>> {
        let mut freq_error: i32;
        freq_error = i32::from(self.read_register(Register::RegFreqErrorMsb.addr()).await? & 0x7);
        freq_error <<= 8i64;
        freq_error += i32::from(self.read_register(Register::RegFreqErrorMid.addr()).await?);
        freq_error <<= 8i64;
        freq_error += i32::from(self.read_register(Register::RegFreqErrorLsb.addr()).await?);

        let f_xtal = 32_000_000; // FXOSC: crystal oscillator (XTAL) frequency (2.5. Chip Specification, p. 14)
        let f_error = ((f64::from(freq_error) * (1i64 << 24) as f64) / f64::from(f_xtal))
            * (self.get_signal_bandwidth().await? as f64 / 500_000.0f64); // p. 37
        Ok(f_error as i64)
    }

    async fn set_ldo_flag(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        let sw = self.get_signal_bandwidth().await?;
        // Section 4.1.1.5
        let symbol_duration = 1000 / (sw / ((1_i64) << self.get_spreading_factor().await?));

        // Section 4.1.1.6
        let ldo_on = symbol_duration > 16;

        let mut config_3 = self.read_register(Register::RegModemConfig3.addr()).await?;
        config_3.set_bit(3, ldo_on);
        //config_3.set_bit(2, true);
        self.write_register(Register::RegModemConfig3.addr(), config_3).await
    }

    async fn read_register(&mut self, reg: u8) -> Result<u8, Error<E, CS::Error, RESET::Error>> {
        let mut buffer = [reg & 0x7f, 0];
        self.cs.set_low().map_err(CS)?;

        let _ = self.spi.transfer(&mut buffer, &[reg & 0x7f, 0]).await.map_err(SPI)?;

        self.cs.set_high().map_err(CS)?;
        Ok(buffer[1])
    }

    async fn write_register(&mut self, reg: u8, byte: u8) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        self.cs.set_low().map_err(CS)?;
        let buffer = [reg | 0x80, byte];
        self.spi.write(&buffer).await.map_err(SPI)?;
        self.cs.set_high().map_err(CS)?;
        Ok(())
    }

    pub async fn put_in_fsk_mode(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        // Put in FSK mode
        let mut op_mode = 0;
        op_mode
            .set_bit(7, false) // FSK mode
            .set_bits(5..6, 0x00) // FSK modulation
            .set_bit(3, false) //Low freq registers
            .set_bits(0..2, 0b011); // Mode

        self.write_register(Register::RegOpMode as u8, op_mode).await
    }

    pub async fn set_fsk_pa_ramp(
        &mut self,
        modulation_shaping: FskDataModulationShaping,
        ramp: FskRampUpRamDown,
    ) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        let mut pa_ramp = 0;
        pa_ramp
            .set_bits(5..6, modulation_shaping as u8)
            .set_bits(0..3, ramp as u8);

        self.write_register(Register::RegPaRamp as u8, pa_ramp).await
    }

    pub async fn set_lora_pa_ramp(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        self.write_register(Register::RegPaRamp as u8, 0b1000).await
    }

    pub async fn set_lora_sync_word(&mut self) -> Result<(), Error<E, CS::Error, RESET::Error>> {
        self.write_register(Register::RegSyncWord as u8, 0x34).await
    }
}
/// Modes of the radio and their corresponding register values.
#[derive(Clone, Copy)]
pub enum RadioMode {
    LongRangeMode = 0x80,
    Sleep = 0x00,
    Stdby = 0x01,
    Tx = 0x03,
    RxContinuous = 0x05,
    RxSingle = 0x06,
}

impl RadioMode {
    /// Returns the address of the mode.
    pub fn addr(self) -> u8 {
        self as u8
    }
}