use core::cmp::min; use core::marker::PhantomData; use core::mem; use core::pin::Pin; use core::sync::atomic::{compiler_fence, Ordering}; use core::task::{Context, Poll}; use embassy::interrupt::InterruptExt; use embassy::io::{AsyncBufRead, AsyncWrite, Result}; use embassy::util::{Unborrow, WakerRegistration}; use embassy_extras::peripheral::{PeripheralMutex, PeripheralState}; use embassy_extras::ring_buffer::RingBuffer; use embassy_extras::{low_power_wait_until, unborrow}; use crate::gpio::sealed::Pin as _; use crate::gpio::{OptionalPin as GpioOptionalPin, Pin as GpioPin}; use crate::pac; use crate::ppi::{AnyConfigurableChannel, ConfigurableChannel, Event, Ppi, Task}; use crate::timer::Instance as TimerInstance; use crate::uarte::{Config, Instance as UarteInstance}; // Re-export SVD variants to allow user to directly set values pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity}; #[derive(Copy, Clone, Debug, PartialEq)] enum RxState { Idle, Receiving, } #[derive(Copy, Clone, Debug, PartialEq)] enum TxState { Idle, Transmitting(usize), } struct State<'d, U: UarteInstance, T: TimerInstance> { phantom: PhantomData<&'d mut U>, timer: T, _ppi_ch1: Ppi<'d, AnyConfigurableChannel>, _ppi_ch2: Ppi<'d, AnyConfigurableChannel>, rx: RingBuffer<'d>, rx_state: RxState, rx_waker: WakerRegistration, tx: RingBuffer<'d>, tx_state: TxState, tx_waker: WakerRegistration, } /// Interface to a UARTE instance /// /// This is a very basic interface that comes with the following limitations: /// - The UARTE instances share the same address space with instances of UART. /// You need to make sure that conflicting instances /// are disabled before using `Uarte`. See product specification: /// - nrf52832: Section 15.2 /// - nrf52840: Section 6.1.2 pub struct BufferedUarte<'d, U: UarteInstance, T: TimerInstance> { inner: PeripheralMutex>, } impl<'d, U: UarteInstance, T: TimerInstance> BufferedUarte<'d, U, T> { /// unsafe: may not leak self or futures pub unsafe fn new( _uarte: impl Unborrow + 'd, timer: impl Unborrow + 'd, ppi_ch1: impl Unborrow + 'd, ppi_ch2: impl Unborrow + 'd, irq: impl Unborrow + 'd, rxd: impl Unborrow + 'd, txd: impl Unborrow + 'd, cts: impl Unborrow + 'd, rts: impl Unborrow + 'd, config: Config, rx_buffer: &'d mut [u8], tx_buffer: &'d mut [u8], ) -> Self { unborrow!(timer, ppi_ch1, ppi_ch2, irq, rxd, txd, cts, rts); let r = U::regs(); let rt = timer.regs(); rxd.conf().write(|w| w.input().connect().drive().h0h1()); r.psel.rxd.write(|w| unsafe { w.bits(rxd.psel_bits()) }); txd.set_high(); txd.conf().write(|w| w.dir().output().drive().h0h1()); r.psel.txd.write(|w| unsafe { w.bits(txd.psel_bits()) }); if let Some(pin) = rts.pin_mut() { pin.set_high(); pin.conf().write(|w| w.dir().output().drive().h0h1()); } r.psel.cts.write(|w| unsafe { w.bits(cts.psel_bits()) }); if let Some(pin) = cts.pin_mut() { pin.conf().write(|w| w.input().connect().drive().h0h1()); } r.psel.rts.write(|w| unsafe { w.bits(rts.psel_bits()) }); r.baudrate.write(|w| w.baudrate().variant(config.baudrate)); r.config.write(|w| w.parity().variant(config.parity)); // Configure let hardware_flow_control = match (rts.pin().is_some(), cts.pin().is_some()) { (false, false) => false, (true, true) => true, _ => panic!("RTS and CTS pins must be either both set or none set."), }; r.config.write(|w| { w.hwfc().bit(hardware_flow_control); w.parity().variant(config.parity); w }); r.baudrate.write(|w| w.baudrate().variant(config.baudrate)); // Enable interrupts r.intenset.write(|w| w.endrx().set().endtx().set()); // Disable the irq, let the Registration enable it when everything is set up. irq.disable(); irq.pend(); // Enable UARTE instance r.enable.write(|w| w.enable().enabled()); // BAUDRATE register values are `baudrate * 2^32 / 16000000` // source: https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values // // We want to stop RX if line is idle for 2 bytes worth of time // That is 20 bits (each byte is 1 start bit + 8 data bits + 1 stop bit) // This gives us the amount of 16M ticks for 20 bits. let timeout = 0x8000_0000 / (config.baudrate as u32 / 40); rt.tasks_stop.write(|w| unsafe { w.bits(1) }); rt.bitmode.write(|w| w.bitmode()._32bit()); rt.prescaler.write(|w| unsafe { w.prescaler().bits(0) }); rt.cc[0].write(|w| unsafe { w.bits(timeout) }); rt.mode.write(|w| w.mode().timer()); rt.shorts.write(|w| { w.compare0_clear().set_bit(); w.compare0_stop().set_bit(); w }); let mut ppi_ch1 = Ppi::new(ppi_ch1.degrade_configurable()); ppi_ch1.set_event(Event::from_reg(&r.events_rxdrdy)); ppi_ch1.set_task(Task::from_reg(&rt.tasks_clear)); ppi_ch1.set_fork_task(Task::from_reg(&rt.tasks_start)); ppi_ch1.enable(); let mut ppi_ch2 = Ppi::new(ppi_ch2.degrade_configurable()); ppi_ch2.set_event(Event::from_reg(&rt.events_compare[0])); ppi_ch2.set_task(Task::from_reg(&r.tasks_stoprx)); ppi_ch2.enable(); BufferedUarte { inner: PeripheralMutex::new( State { phantom: PhantomData, timer, _ppi_ch1: ppi_ch1, _ppi_ch2: ppi_ch2, rx: RingBuffer::new(rx_buffer), rx_state: RxState::Idle, rx_waker: WakerRegistration::new(), tx: RingBuffer::new(tx_buffer), tx_state: TxState::Idle, tx_waker: WakerRegistration::new(), }, irq, ), } } pub fn set_baudrate(self: Pin<&mut Self>, baudrate: Baudrate) { let mut inner = self.inner(); inner.as_mut().register_interrupt(); inner.with(|state, _irq| { let r = U::regs(); let rt = state.timer.regs(); let timeout = 0x8000_0000 / (baudrate as u32 / 40); rt.cc[0].write(|w| unsafe { w.bits(timeout) }); rt.tasks_clear.write(|w| unsafe { w.bits(1) }); r.baudrate.write(|w| w.baudrate().variant(baudrate)); }); } fn inner(self: Pin<&mut Self>) -> Pin<&mut PeripheralMutex>> { unsafe { Pin::new_unchecked(&mut self.get_unchecked_mut().inner) } } } impl<'d, U: UarteInstance, T: TimerInstance> AsyncBufRead for BufferedUarte<'d, U, T> { fn poll_fill_buf(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll> { let mut inner = self.inner(); inner.as_mut().register_interrupt(); inner.with(|state, _irq| { // Conservative compiler fence to prevent optimizations that do not // take in to account actions by DMA. The fence has been placed here, // before any DMA action has started compiler_fence(Ordering::SeqCst); trace!("poll_read"); // We have data ready in buffer? Return it. let buf = state.rx.pop_buf(); if !buf.is_empty() { trace!(" got {:?} {:?}", buf.as_ptr() as u32, buf.len()); let buf: &[u8] = buf; let buf: &[u8] = unsafe { mem::transmute(buf) }; return Poll::Ready(Ok(buf)); } trace!(" empty"); state.rx_waker.register(cx.waker()); Poll::>::Pending }) } fn consume(self: Pin<&mut Self>, amt: usize) { let mut inner = self.inner(); inner.as_mut().register_interrupt(); inner.with(|state, irq| { trace!("consume {:?}", amt); state.rx.pop(amt); irq.pend(); }) } } impl<'d, U: UarteInstance, T: TimerInstance> AsyncWrite for BufferedUarte<'d, U, T> { fn poll_write(self: Pin<&mut Self>, cx: &mut Context<'_>, buf: &[u8]) -> Poll> { let mut inner = self.inner(); inner.as_mut().register_interrupt(); inner.with(|state, irq| { trace!("poll_write: {:?}", buf.len()); let tx_buf = state.tx.push_buf(); if tx_buf.is_empty() { trace!("poll_write: pending"); state.tx_waker.register(cx.waker()); return Poll::Pending; } let n = min(tx_buf.len(), buf.len()); tx_buf[..n].copy_from_slice(&buf[..n]); state.tx.push(n); trace!("poll_write: queued {:?}", n); // Conservative compiler fence to prevent optimizations that do not // take in to account actions by DMA. The fence has been placed here, // before any DMA action has started compiler_fence(Ordering::SeqCst); irq.pend(); Poll::Ready(Ok(n)) }) } } impl<'a, U: UarteInstance, T: TimerInstance> Drop for State<'a, U, T> { fn drop(&mut self) { let r = U::regs(); let rt = self.timer.regs(); // TODO this probably deadlocks. do like Uarte instead. rt.tasks_stop.write(|w| unsafe { w.bits(1) }); if let RxState::Receiving = self.rx_state { r.tasks_stoprx.write(|w| unsafe { w.bits(1) }); } if let TxState::Transmitting(_) = self.tx_state { r.tasks_stoptx.write(|w| unsafe { w.bits(1) }); } if let RxState::Receiving = self.rx_state { low_power_wait_until(|| r.events_endrx.read().bits() == 1); } if let TxState::Transmitting(_) = self.tx_state { low_power_wait_until(|| r.events_endtx.read().bits() == 1); } } } impl<'a, U: UarteInstance, T: TimerInstance> PeripheralState for State<'a, U, T> { type Interrupt = U::Interrupt; fn on_interrupt(&mut self) { trace!("irq: start"); let r = U::regs(); let rt = self.timer.regs(); loop { match self.rx_state { RxState::Idle => { trace!(" irq_rx: in state idle"); let buf = self.rx.push_buf(); if !buf.is_empty() { trace!(" irq_rx: starting {:?}", buf.len()); self.rx_state = RxState::Receiving; // Set up the DMA read r.rxd.ptr.write(|w| // The PTR field is a full 32 bits wide and accepts the full range // of values. unsafe { w.ptr().bits(buf.as_ptr() as u32) }); r.rxd.maxcnt.write(|w| // We're giving it the length of the buffer, so no danger of // accessing invalid memory. We have verified that the length of the // buffer fits in an `u8`, so the cast to `u8` is also fine. // // The MAXCNT field is at least 8 bits wide and accepts the full // range of values. unsafe { w.maxcnt().bits(buf.len() as _) }); trace!(" irq_rx: buf {:?} {:?}", buf.as_ptr() as u32, buf.len()); // Start UARTE Receive transaction r.tasks_startrx.write(|w| // `1` is a valid value to write to task registers. unsafe { w.bits(1) }); } break; } RxState::Receiving => { trace!(" irq_rx: in state receiving"); if r.events_endrx.read().bits() != 0 { rt.tasks_stop.write(|w| unsafe { w.bits(1) }); let n: usize = r.rxd.amount.read().amount().bits() as usize; trace!(" irq_rx: endrx {:?}", n); self.rx.push(n); r.events_endrx.reset(); self.rx_waker.wake(); self.rx_state = RxState::Idle; } else { break; } } } } loop { match self.tx_state { TxState::Idle => { trace!(" irq_tx: in state Idle"); let buf = self.tx.pop_buf(); if !buf.is_empty() { trace!(" irq_tx: starting {:?}", buf.len()); self.tx_state = TxState::Transmitting(buf.len()); // Set up the DMA write r.txd.ptr.write(|w| // The PTR field is a full 32 bits wide and accepts the full range // of values. unsafe { w.ptr().bits(buf.as_ptr() as u32) }); r.txd.maxcnt.write(|w| // We're giving it the length of the buffer, so no danger of // accessing invalid memory. We have verified that the length of the // buffer fits in an `u8`, so the cast to `u8` is also fine. // // The MAXCNT field is 8 bits wide and accepts the full range of // values. unsafe { w.maxcnt().bits(buf.len() as _) }); // Start UARTE Transmit transaction r.tasks_starttx.write(|w| // `1` is a valid value to write to task registers. unsafe { w.bits(1) }); } break; } TxState::Transmitting(n) => { trace!(" irq_tx: in state Transmitting"); if r.events_endtx.read().bits() != 0 { r.events_endtx.reset(); trace!(" irq_tx: endtx {:?}", n); self.tx.pop(n); self.tx_waker.wake(); self.tx_state = TxState::Idle; } else { break; } } } } trace!("irq: end"); } }