use core::convert::Infallible; use core::marker::PhantomData; use embassy::interrupt::InterruptExt; use embassy::traits; use embassy::util::OnDrop; use embassy::util::Signal; use embassy::util::Unborrow; use embassy_extras::unborrow; use futures::Future; use rand_core::RngCore; use crate::interrupt; use crate::pac; use crate::peripherals::RNG; impl RNG { fn regs() -> &'static pac::rng::RegisterBlock { unsafe { &*pac::RNG::ptr() } } } static NEXT_BYTE: Signal = Signal::new(); /// A wrapper around an nRF RNG peripheral. /// /// It has a non-blocking API, through `embassy::traits::Rng`, and a blocking api through `rand`. pub struct Rng<'d> { irq: interrupt::RNG, phantom: PhantomData<&'d mut RNG>, } impl<'d> Rng<'d> { pub fn new( _rng: impl Unborrow + 'd, irq: impl Unborrow + 'd, ) -> Self { unborrow!(irq); let this = Self { irq, phantom: PhantomData, }; this.stop(); this.disable_irq(); this.irq.set_handler(Self::on_interrupt); this.irq.unpend(); this.irq.enable(); this } fn on_interrupt(_: *mut ()) { NEXT_BYTE.signal(RNG::regs().value.read().value().bits()); RNG::regs().events_valrdy.reset(); } fn stop(&self) { RNG::regs().tasks_stop.write(|w| unsafe { w.bits(1) }) } fn start(&self) { RNG::regs().tasks_start.write(|w| unsafe { w.bits(1) }) } fn enable_irq(&self) { RNG::regs().intenset.write(|w| w.valrdy().set()); } fn disable_irq(&self) { RNG::regs().intenclr.write(|w| w.valrdy().clear()); } /// Enable or disable the RNG's bias correction. /// /// Bias correction removes any bias towards a '1' or a '0' in the bits generated. /// However, this makes the generation of numbers slower. /// /// Defaults to disabled. pub fn bias_correction(&self, enable: bool) { RNG::regs().config.write(|w| w.dercen().bit(enable)) } } impl<'d> Drop for Rng<'d> { fn drop(&mut self) { self.irq.disable() } } impl<'d> traits::rng::Rng for Rng<'d> { type Error = Infallible; #[rustfmt::skip] // For some reason rustfmt removes the where clause type RngFuture<'a> where 'd: 'a = impl Future> + 'a; fn fill_bytes<'a>(&'a mut self, dest: &'a mut [u8]) -> Self::RngFuture<'a> { async move { self.enable_irq(); self.start(); let on_drop = OnDrop::new(|| { self.stop(); self.disable_irq(); }); for byte in dest.iter_mut() { *byte = NEXT_BYTE.wait().await; } // Trigger the teardown drop(on_drop); Ok(()) } } } impl<'d> RngCore for Rng<'d> { fn fill_bytes(&mut self, dest: &mut [u8]) { self.start(); for byte in dest.iter_mut() { let regs = RNG::regs(); while regs.events_valrdy.read().bits() == 0 {} regs.events_valrdy.reset(); *byte = regs.value.read().value().bits(); } self.stop(); } fn next_u32(&mut self) -> u32 { let mut bytes = [0; 4]; self.fill_bytes(&mut bytes); // We don't care about the endianness, so just use the native one. u32::from_ne_bytes(bytes) } fn next_u64(&mut self) -> u64 { let mut bytes = [0; 8]; self.fill_bytes(&mut bytes); u64::from_ne_bytes(bytes) } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> { self.fill_bytes(dest); Ok(()) } } // TODO: Should `Rng` implement `CryptoRng`? It's 'suitable for cryptographic purposes' according to the specification.