//! Async UART use core::future::Future; use core::marker::PhantomData; use core::pin::Pin; use core::sync::atomic::{compiler_fence, AtomicBool, Ordering}; use core::task::Poll; use embassy::traits::uart::{Error, Read, Write}; use embassy::util::{AtomicWaker, OnDrop, PeripheralBorrow}; use embassy_extras::peripheral_shared::{Peripheral, PeripheralState}; use embassy_extras::unborrow; use futures::future::poll_fn; use crate::fmt::{assert, panic, *}; use crate::gpio::sealed::Pin as _; use crate::gpio::{OptionalPin as GpioOptionalPin, Pin as GpioPin}; use crate::interrupt; use crate::interrupt::Interrupt; use crate::pac; use crate::peripherals; use crate::target_constants::EASY_DMA_SIZE; // Re-export SVD variants to allow user to directly set values. pub use pac::uarte0::{baudrate::BAUDRATE_A as Baudrate, config::PARITY_A as Parity}; #[non_exhaustive] pub struct Config { pub parity: Parity, pub baudrate: Baudrate, } impl Default for Config { fn default() -> Self { Self { parity: Parity::EXCLUDED, baudrate: Baudrate::BAUD115200, } } } struct State { peri: T, endrx_waker: AtomicWaker, endtx_waker: AtomicWaker, } /// Interface to the UARTE peripheral pub struct Uarte<'d, T: Instance> { inner: Peripheral>, phantom: PhantomData<&'d mut T>, } impl<'d, T: Instance> Uarte<'d, T> { /// Creates the interface to a UARTE instance. /// Sets the baud rate, parity and assigns the pins to the UARTE peripheral. /// /// # Safety /// /// The returned API is safe unless you use `mem::forget` (or similar safe mechanisms) /// on stack allocated buffers which which have been passed to [`send()`](Uarte::send) /// or [`receive`](Uarte::receive). #[allow(unused_unsafe)] pub unsafe fn new( uarte: impl PeripheralBorrow + 'd, irq: impl PeripheralBorrow + 'd, rxd: impl PeripheralBorrow + 'd, txd: impl PeripheralBorrow + 'd, cts: impl PeripheralBorrow + 'd, rts: impl PeripheralBorrow + 'd, config: Config, ) -> Self { unborrow!(uarte, irq, rxd, txd, cts, rts); let r = uarte.regs(); assert!(r.enable.read().enable().is_disabled()); rxd.conf().write(|w| w.input().connect().drive().h0h1()); r.psel.rxd.write(|w| unsafe { w.bits(rxd.psel_bits()) }); txd.set_high(); txd.conf().write(|w| w.dir().output().drive().h0h1()); r.psel.txd.write(|w| unsafe { w.bits(txd.psel_bits()) }); if let Some(pin) = rts.pin_mut() { pin.set_high(); pin.conf().write(|w| w.dir().output().drive().h0h1()); } r.psel.cts.write(|w| unsafe { w.bits(cts.psel_bits()) }); if let Some(pin) = cts.pin_mut() { pin.conf().write(|w| w.input().connect().drive().h0h1()); } r.psel.rts.write(|w| unsafe { w.bits(rts.psel_bits()) }); // Configure let hardware_flow_control = match (rts.pin().is_some(), cts.pin().is_some()) { (false, false) => false, (true, true) => true, _ => panic!("RTS and CTS pins must be either both set or none set."), }; r.config.write(|w| { w.hwfc().bit(hardware_flow_control); w.parity().variant(config.parity); w }); r.baudrate.write(|w| w.baudrate().variant(config.baudrate)); // Disable all interrupts r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); // Reset rxstarted, txstarted. These are used by drop to know whether a transfer was // stopped midway or not. r.events_rxstarted.reset(); r.events_txstarted.reset(); // Enable r.enable.write(|w| w.enable().enabled()); Self { inner: Peripheral::new( irq, State { peri: uarte, endrx_waker: AtomicWaker::new(), endtx_waker: AtomicWaker::new(), }, ), phantom: PhantomData, } } fn inner(self: Pin<&mut Self>) -> Pin<&mut Peripheral>> { unsafe { Pin::new_unchecked(&mut self.get_unchecked_mut().inner) } } } impl PeripheralState for State { type Interrupt = T::Interrupt; fn on_interrupt(&self) { let r = self.peri.regs(); if r.events_endrx.read().bits() != 0 { self.endrx_waker.wake(); r.intenclr.write(|w| w.endrx().clear()); } if r.events_endtx.read().bits() != 0 { self.endtx_waker.wake(); r.intenclr.write(|w| w.endtx().clear()); } if r.events_rxto.read().bits() != 0 { r.intenclr.write(|w| w.rxto().clear()); } if r.events_txstopped.read().bits() != 0 { r.intenclr.write(|w| w.txstopped().clear()); } } } impl<'a, T: Instance> Drop for Uarte<'a, T> { fn drop(&mut self) { info!("uarte drop"); let s = unsafe { Pin::new_unchecked(&mut self.inner) }.state(); let r = s.peri.regs(); let did_stoprx = r.events_rxstarted.read().bits() != 0; let did_stoptx = r.events_txstarted.read().bits() != 0; info!("did_stoprx {} did_stoptx {}", did_stoprx, did_stoptx); // Wait for rxto or txstopped, if needed. r.intenset.write(|w| w.rxto().set().txstopped().set()); while (did_stoprx && r.events_rxto.read().bits() == 0) || (did_stoptx && r.events_txstopped.read().bits() == 0) { info!("uarte drop: wfe"); cortex_m::asm::wfe(); } cortex_m::asm::sev(); // Finally we can disable! r.enable.write(|w| w.enable().disabled()); info!("uarte drop: done"); // TODO: disable pins } } impl<'d, T: Instance> Read for Uarte<'d, T> { #[rustfmt::skip] type ReadFuture<'a> where Self: 'a = impl Future> + 'a; fn read<'a>(mut self: Pin<&'a mut Self>, rx_buffer: &'a mut [u8]) -> Self::ReadFuture<'a> { self.as_mut().inner().register_interrupt(); async move { let ptr = rx_buffer.as_ptr(); let len = rx_buffer.len(); assert!(len <= EASY_DMA_SIZE); let s = self.inner().state(); let r = s.peri.regs(); let drop = OnDrop::new(move || { info!("read drop: stopping"); r.intenclr.write(|w| w.endrx().clear()); r.events_rxto.reset(); r.tasks_stoprx.write(|w| unsafe { w.bits(1) }); while r.events_endrx.read().bits() == 0 {} info!("read drop: stopped"); }); r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) }); r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) }); r.events_endrx.reset(); r.intenset.write(|w| w.endrx().set()); compiler_fence(Ordering::SeqCst); trace!("startrx"); r.tasks_startrx.write(|w| unsafe { w.bits(1) }); poll_fn(|cx| { s.endrx_waker.register(cx.waker()); if r.events_endrx.read().bits() != 0 { return Poll::Ready(()); } Poll::Pending }) .await; compiler_fence(Ordering::SeqCst); r.events_rxstarted.reset(); drop.defuse(); Ok(()) } } } impl<'d, T: Instance> Write for Uarte<'d, T> { #[rustfmt::skip] type WriteFuture<'a> where Self: 'a = impl Future> + 'a; fn write<'a>(mut self: Pin<&'a mut Self>, tx_buffer: &'a [u8]) -> Self::WriteFuture<'a> { self.as_mut().inner().register_interrupt(); async move { let ptr = tx_buffer.as_ptr(); let len = tx_buffer.len(); assert!(len <= EASY_DMA_SIZE); // TODO: panic if buffer is not in SRAM let s = self.inner().state(); let r = s.peri.regs(); let drop = OnDrop::new(move || { info!("write drop: stopping"); r.intenclr.write(|w| w.endtx().clear()); r.events_txstopped.reset(); r.tasks_stoptx.write(|w| unsafe { w.bits(1) }); // TX is stopped almost instantly, spinning is fine. while r.events_endtx.read().bits() == 0 {} info!("write drop: stopped"); }); r.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) }); r.txd.maxcnt.write(|w| unsafe { w.maxcnt().bits(len as _) }); r.events_endtx.reset(); r.intenset.write(|w| w.endtx().set()); compiler_fence(Ordering::SeqCst); trace!("starttx"); r.tasks_starttx.write(|w| unsafe { w.bits(1) }); poll_fn(|cx| { s.endtx_waker.register(cx.waker()); if r.events_endtx.read().bits() != 0 { return Poll::Ready(()); } Poll::Pending }) .await; compiler_fence(Ordering::SeqCst); r.events_txstarted.reset(); drop.defuse(); Ok(()) } } } mod sealed { use super::*; pub trait Instance { fn regs(&self) -> &pac::uarte0::RegisterBlock; } } pub trait Instance: sealed::Instance + 'static { type Interrupt: Interrupt; } macro_rules! impl_instance { ($type:ident, $irq:ident) => { impl sealed::Instance for peripherals::$type { fn regs(&self) -> &pac::uarte0::RegisterBlock { unsafe { &*pac::$type::ptr() } } } impl Instance for peripherals::$type { type Interrupt = interrupt::$irq; } }; } impl_instance!(UARTE0, UARTE0_UART0); #[cfg(any(feature = "52833", feature = "52840", feature = "9160"))] impl_instance!(UARTE1, UARTE1);