//! Serial Peripheral Instance in master mode (SPIM) driver. #![macro_use] use core::future::poll_fn; use core::marker::PhantomData; #[cfg(feature = "_nrf52832_anomaly_109")] use core::sync::atomic::AtomicU8; use core::sync::atomic::{compiler_fence, Ordering}; use core::task::Poll; use embassy_embedded_hal::SetConfig; use embassy_hal_internal::{into_ref, PeripheralRef}; use embassy_sync::waitqueue::AtomicWaker; pub use embedded_hal_02::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3}; pub use pac::spim0::config::ORDER_A as BitOrder; pub use pac::spim0::frequency::FREQUENCY_A as Frequency; use crate::chip::{EASY_DMA_SIZE, FORCE_COPY_BUFFER_SIZE}; use crate::gpio::{self, convert_drive, AnyPin, OutputDrive, Pin as GpioPin, PselBits, SealedPin as _}; use crate::interrupt::typelevel::Interrupt; use crate::util::{slice_in_ram_or, slice_ptr_len, slice_ptr_parts, slice_ptr_parts_mut}; use crate::{interrupt, pac, Peripheral}; /// SPIM error #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] #[non_exhaustive] pub enum Error { /// EasyDMA can only read from data memory, read only buffers in flash will fail. BufferNotInRAM, } /// SPIM configuration. #[non_exhaustive] pub struct Config { /// Frequency pub frequency: Frequency, /// SPI mode pub mode: Mode, /// Bit order pub bit_order: BitOrder, /// Overread character. /// /// When doing bidirectional transfers, if the TX buffer is shorter than the RX buffer, /// this byte will be transmitted in the MOSI line for the left-over bytes. pub orc: u8, /// Drive strength for the SCK line. pub sck_drive: OutputDrive, /// Drive strength for the MOSI line. pub mosi_drive: OutputDrive, /// Drive strength for the MISO line. pub miso_drive: OutputDrive, } impl Default for Config { fn default() -> Self { Self { frequency: Frequency::M1, mode: MODE_0, bit_order: BitOrder::MSB_FIRST, orc: 0x00, sck_drive: OutputDrive::HighDrive, mosi_drive: OutputDrive::HighDrive, miso_drive: OutputDrive::HighDrive, } } } /// Interrupt handler. pub struct InterruptHandler { _phantom: PhantomData, } impl interrupt::typelevel::Handler for InterruptHandler { unsafe fn on_interrupt() { let r = T::regs(); let s = T::state(); #[cfg(feature = "_nrf52832_anomaly_109")] { // Ideally we should call this only during the first chunk transfer, // but so far calling this every time doesn't seem to be causing any issues. if r.events_started.read().bits() != 0 { s.waker.wake(); r.intenclr.write(|w| w.started().clear()); } } if r.events_end.read().bits() != 0 { s.waker.wake(); r.intenclr.write(|w| w.end().clear()); } } } /// SPIM driver. pub struct Spim<'d, T: Instance> { _p: PeripheralRef<'d, T>, } impl<'d, T: Instance> Spim<'d, T> { /// Create a new SPIM driver. pub fn new( spim: impl Peripheral

+ 'd, _irq: impl interrupt::typelevel::Binding> + 'd, sck: impl Peripheral

+ 'd, miso: impl Peripheral

+ 'd, mosi: impl Peripheral

+ 'd, config: Config, ) -> Self { into_ref!(sck, miso, mosi); Self::new_inner( spim, Some(sck.map_into()), Some(miso.map_into()), Some(mosi.map_into()), config, ) } /// Create a new SPIM driver, capable of TX only (MOSI only). pub fn new_txonly( spim: impl Peripheral

+ 'd, _irq: impl interrupt::typelevel::Binding> + 'd, sck: impl Peripheral

+ 'd, mosi: impl Peripheral

+ 'd, config: Config, ) -> Self { into_ref!(sck, mosi); Self::new_inner(spim, Some(sck.map_into()), None, Some(mosi.map_into()), config) } /// Create a new SPIM driver, capable of RX only (MISO only). pub fn new_rxonly( spim: impl Peripheral

+ 'd, _irq: impl interrupt::typelevel::Binding> + 'd, sck: impl Peripheral

+ 'd, miso: impl Peripheral

+ 'd, config: Config, ) -> Self { into_ref!(sck, miso); Self::new_inner(spim, Some(sck.map_into()), Some(miso.map_into()), None, config) } /// Create a new SPIM driver, capable of TX only (MOSI only), without SCK pin. pub fn new_txonly_nosck( spim: impl Peripheral

+ 'd, _irq: impl interrupt::typelevel::Binding> + 'd, mosi: impl Peripheral

+ 'd, config: Config, ) -> Self { into_ref!(mosi); Self::new_inner(spim, None, None, Some(mosi.map_into()), config) } fn new_inner( spim: impl Peripheral

+ 'd, sck: Option>, miso: Option>, mosi: Option>, config: Config, ) -> Self { into_ref!(spim); let r = T::regs(); // Configure pins if let Some(sck) = &sck { sck.conf() .write(|w| w.dir().output().drive().variant(convert_drive(config.sck_drive))); } if let Some(mosi) = &mosi { mosi.conf() .write(|w| w.dir().output().drive().variant(convert_drive(config.mosi_drive))); } if let Some(miso) = &miso { miso.conf() .write(|w| w.input().connect().drive().variant(convert_drive(config.miso_drive))); } match config.mode.polarity { Polarity::IdleHigh => { if let Some(sck) = &sck { sck.set_high(); } if let Some(mosi) = &mosi { mosi.set_high(); } } Polarity::IdleLow => { if let Some(sck) = &sck { sck.set_low(); } if let Some(mosi) = &mosi { mosi.set_low(); } } } // Select pins. r.psel.sck.write(|w| unsafe { w.bits(sck.psel_bits()) }); r.psel.mosi.write(|w| unsafe { w.bits(mosi.psel_bits()) }); r.psel.miso.write(|w| unsafe { w.bits(miso.psel_bits()) }); // Enable SPIM instance. r.enable.write(|w| w.enable().enabled()); let mut spim = Self { _p: spim }; // Apply runtime peripheral configuration Self::set_config(&mut spim, &config).unwrap(); // Disable all events interrupts r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); T::Interrupt::unpend(); unsafe { T::Interrupt::enable() }; spim } fn prepare_dma_transfer(&mut self, rx: *mut [u8], tx: *const [u8], offset: usize, length: usize) { compiler_fence(Ordering::SeqCst); let r = T::regs(); fn xfer_params(ptr: u32, total: usize, offset: usize, length: usize) -> (u32, usize) { if total > offset { (ptr.wrapping_add(offset as _), core::cmp::min(total - offset, length)) } else { (ptr, 0) } } // Set up the DMA read. let (ptr, len) = slice_ptr_parts_mut(rx); let (rx_ptr, rx_len) = xfer_params(ptr as _, len as _, offset, length); r.rxd.ptr.write(|w| unsafe { w.ptr().bits(rx_ptr) }); r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(rx_len as _) }); // Set up the DMA write. let (ptr, len) = slice_ptr_parts(tx); let (tx_ptr, tx_len) = xfer_params(ptr as _, len as _, offset, length); r.txd.ptr.write(|w| unsafe { w.ptr().bits(tx_ptr) }); r.txd.maxcnt.write(|w| unsafe { w.maxcnt().bits(tx_len as _) }); /* trace!("XFER: offset: {}, length: {}", offset, length); trace!("RX(len: {}, ptr: {=u32:02x})", rx_len, rx_ptr as u32); trace!("TX(len: {}, ptr: {=u32:02x})", tx_len, tx_ptr as u32); */ #[cfg(feature = "_nrf52832_anomaly_109")] if offset == 0 { let s = T::state(); r.events_started.reset(); // Set rx/tx buffer lengths to 0... r.txd.maxcnt.reset(); r.rxd.maxcnt.reset(); // ...and keep track of original buffer lengths... s.tx.store(tx_len as _, Ordering::Relaxed); s.rx.store(rx_len as _, Ordering::Relaxed); // ...signalling the start of the fake transfer. r.intenset.write(|w| w.started().bit(true)); } // Reset and enable the event r.events_end.reset(); r.intenset.write(|w| w.end().set()); // Start SPI transaction. r.tasks_start.write(|w| unsafe { w.bits(1) }); } fn blocking_inner_from_ram_chunk(&mut self, rx: *mut [u8], tx: *const [u8], offset: usize, length: usize) { self.prepare_dma_transfer(rx, tx, offset, length); #[cfg(feature = "_nrf52832_anomaly_109")] if offset == 0 { while self.nrf52832_dma_workaround_status().is_pending() {} } // Wait for 'end' event. while T::regs().events_end.read().bits() == 0 {} compiler_fence(Ordering::SeqCst); } fn blocking_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> { slice_in_ram_or(tx, Error::BufferNotInRAM)?; // NOTE: RAM slice check for rx is not necessary, as a mutable // slice can only be built from data located in RAM. let xfer_len = core::cmp::max(slice_ptr_len(rx), slice_ptr_len(tx)); for offset in (0..xfer_len).step_by(EASY_DMA_SIZE) { let length = core::cmp::min(xfer_len - offset, EASY_DMA_SIZE); self.blocking_inner_from_ram_chunk(rx, tx, offset, length); } Ok(()) } fn blocking_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> { match self.blocking_inner_from_ram(rx, tx) { Ok(_) => Ok(()), Err(Error::BufferNotInRAM) => { // trace!("Copying SPIM tx buffer into RAM for DMA"); let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..tx.len()]; tx_ram_buf.copy_from_slice(tx); self.blocking_inner_from_ram(rx, tx_ram_buf) } } } async fn async_inner_from_ram_chunk(&mut self, rx: *mut [u8], tx: *const [u8], offset: usize, length: usize) { self.prepare_dma_transfer(rx, tx, offset, length); #[cfg(feature = "_nrf52832_anomaly_109")] if offset == 0 { poll_fn(|cx| { let s = T::state(); s.waker.register(cx.waker()); self.nrf52832_dma_workaround_status() }) .await; } // Wait for 'end' event. poll_fn(|cx| { T::state().waker.register(cx.waker()); if T::regs().events_end.read().bits() != 0 { return Poll::Ready(()); } Poll::Pending }) .await; compiler_fence(Ordering::SeqCst); } async fn async_inner_from_ram(&mut self, rx: *mut [u8], tx: *const [u8]) -> Result<(), Error> { slice_in_ram_or(tx, Error::BufferNotInRAM)?; // NOTE: RAM slice check for rx is not necessary, as a mutable // slice can only be built from data located in RAM. let xfer_len = core::cmp::max(slice_ptr_len(rx), slice_ptr_len(tx)); for offset in (0..xfer_len).step_by(EASY_DMA_SIZE) { let length = core::cmp::min(xfer_len - offset, EASY_DMA_SIZE); self.async_inner_from_ram_chunk(rx, tx, offset, length).await; } Ok(()) } async fn async_inner(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> { match self.async_inner_from_ram(rx, tx).await { Ok(_) => Ok(()), Err(Error::BufferNotInRAM) => { // trace!("Copying SPIM tx buffer into RAM for DMA"); let tx_ram_buf = &mut [0; FORCE_COPY_BUFFER_SIZE][..tx.len()]; tx_ram_buf.copy_from_slice(tx); self.async_inner_from_ram(rx, tx_ram_buf).await } } } /// Reads data from the SPI bus without sending anything. Blocks until the buffer has been filled. pub fn blocking_read(&mut self, data: &mut [u8]) -> Result<(), Error> { self.blocking_inner(data, &[]) } /// Simultaneously sends and receives data. Blocks until the transmission is completed. /// If necessary, the write buffer will be copied into RAM (see struct description for detail). pub fn blocking_transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> { self.blocking_inner(read, write) } /// Same as [`blocking_transfer`](Spim::blocking_transfer) but will fail instead of copying data into RAM. Consult the module level documentation to learn more. pub fn blocking_transfer_from_ram(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> { self.blocking_inner(read, write) } /// Simultaneously sends and receives data. /// Places the received data into the same buffer and blocks until the transmission is completed. pub fn blocking_transfer_in_place(&mut self, data: &mut [u8]) -> Result<(), Error> { self.blocking_inner_from_ram(data, data) } /// Sends data, discarding any received data. Blocks until the transmission is completed. /// If necessary, the write buffer will be copied into RAM (see struct description for detail). pub fn blocking_write(&mut self, data: &[u8]) -> Result<(), Error> { self.blocking_inner(&mut [], data) } /// Same as [`blocking_write`](Spim::blocking_write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more. pub fn blocking_write_from_ram(&mut self, data: &[u8]) -> Result<(), Error> { self.blocking_inner(&mut [], data) } /// Reads data from the SPI bus without sending anything. pub async fn read(&mut self, data: &mut [u8]) -> Result<(), Error> { self.async_inner(data, &[]).await } /// Simultaneously sends and receives data. /// If necessary, the write buffer will be copied into RAM (see struct description for detail). pub async fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> { self.async_inner(read, write).await } /// Same as [`transfer`](Spim::transfer) but will fail instead of copying data into RAM. Consult the module level documentation to learn more. pub async fn transfer_from_ram(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Error> { self.async_inner_from_ram(read, write).await } /// Simultaneously sends and receives data. Places the received data into the same buffer. pub async fn transfer_in_place(&mut self, data: &mut [u8]) -> Result<(), Error> { self.async_inner_from_ram(data, data).await } /// Sends data, discarding any received data. /// If necessary, the write buffer will be copied into RAM (see struct description for detail). pub async fn write(&mut self, data: &[u8]) -> Result<(), Error> { self.async_inner(&mut [], data).await } /// Same as [`write`](Spim::write) but will fail instead of copying data into RAM. Consult the module level documentation to learn more. pub async fn write_from_ram(&mut self, data: &[u8]) -> Result<(), Error> { self.async_inner_from_ram(&mut [], data).await } #[cfg(feature = "_nrf52832_anomaly_109")] fn nrf52832_dma_workaround_status(&mut self) -> Poll<()> { let r = T::regs(); if r.events_started.read().bits() != 0 { let s = T::state(); // Handle the first "fake" transmission r.events_started.reset(); r.events_end.reset(); // Update DMA registers with correct rx/tx buffer sizes r.rxd .maxcnt .write(|w| unsafe { w.maxcnt().bits(s.rx.load(Ordering::Relaxed)) }); r.txd .maxcnt .write(|w| unsafe { w.maxcnt().bits(s.tx.load(Ordering::Relaxed)) }); r.intenset.write(|w| w.end().set()); // ... and start actual, hopefully glitch-free transmission r.tasks_start.write(|w| unsafe { w.bits(1) }); return Poll::Ready(()); } Poll::Pending } } impl<'d, T: Instance> Drop for Spim<'d, T> { fn drop(&mut self) { trace!("spim drop"); // TODO check for abort, wait for xxxstopped // disable! let r = T::regs(); r.enable.write(|w| w.enable().disabled()); gpio::deconfigure_pin(r.psel.sck.read().bits()); gpio::deconfigure_pin(r.psel.miso.read().bits()); gpio::deconfigure_pin(r.psel.mosi.read().bits()); // Disable all events interrupts T::Interrupt::disable(); trace!("spim drop: done"); } } pub(crate) struct State { waker: AtomicWaker, #[cfg(feature = "_nrf52832_anomaly_109")] rx: AtomicU8, #[cfg(feature = "_nrf52832_anomaly_109")] tx: AtomicU8, } impl State { pub(crate) const fn new() -> Self { Self { waker: AtomicWaker::new(), #[cfg(feature = "_nrf52832_anomaly_109")] rx: AtomicU8::new(0), #[cfg(feature = "_nrf52832_anomaly_109")] tx: AtomicU8::new(0), } } } pub(crate) trait SealedInstance { fn regs() -> &'static pac::spim0::RegisterBlock; fn state() -> &'static State; } /// SPIM peripheral instance #[allow(private_bounds)] pub trait Instance: Peripheral

+ SealedInstance + 'static { /// Interrupt for this peripheral. type Interrupt: interrupt::typelevel::Interrupt; } macro_rules! impl_spim { ($type:ident, $pac_type:ident, $irq:ident) => { impl crate::spim::SealedInstance for peripherals::$type { fn regs() -> &'static pac::spim0::RegisterBlock { unsafe { &*pac::$pac_type::ptr() } } fn state() -> &'static crate::spim::State { static STATE: crate::spim::State = crate::spim::State::new(); &STATE } } impl crate::spim::Instance for peripherals::$type { type Interrupt = crate::interrupt::typelevel::$irq; } }; } // ==================== mod eh02 { use super::*; impl<'d, T: Instance> embedded_hal_02::blocking::spi::Transfer for Spim<'d, T> { type Error = Error; fn transfer<'w>(&mut self, words: &'w mut [u8]) -> Result<&'w [u8], Self::Error> { self.blocking_transfer_in_place(words)?; Ok(words) } } impl<'d, T: Instance> embedded_hal_02::blocking::spi::Write for Spim<'d, T> { type Error = Error; fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> { self.blocking_write(words) } } } impl embedded_hal_1::spi::Error for Error { fn kind(&self) -> embedded_hal_1::spi::ErrorKind { match *self { Self::BufferNotInRAM => embedded_hal_1::spi::ErrorKind::Other, } } } impl<'d, T: Instance> embedded_hal_1::spi::ErrorType for Spim<'d, T> { type Error = Error; } impl<'d, T: Instance> embedded_hal_1::spi::SpiBus for Spim<'d, T> { fn flush(&mut self) -> Result<(), Self::Error> { Ok(()) } fn read(&mut self, words: &mut [u8]) -> Result<(), Self::Error> { self.blocking_transfer(words, &[]) } fn write(&mut self, words: &[u8]) -> Result<(), Self::Error> { self.blocking_write(words) } fn transfer(&mut self, read: &mut [u8], write: &[u8]) -> Result<(), Self::Error> { self.blocking_transfer(read, write) } fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Self::Error> { self.blocking_transfer_in_place(words) } } impl<'d, T: Instance> embedded_hal_async::spi::SpiBus for Spim<'d, T> { async fn flush(&mut self) -> Result<(), Error> { Ok(()) } async fn read(&mut self, words: &mut [u8]) -> Result<(), Error> { self.read(words).await } async fn write(&mut self, data: &[u8]) -> Result<(), Error> { self.write(data).await } async fn transfer(&mut self, rx: &mut [u8], tx: &[u8]) -> Result<(), Error> { self.transfer(rx, tx).await } async fn transfer_in_place(&mut self, words: &mut [u8]) -> Result<(), Error> { self.transfer_in_place(words).await } } impl<'d, T: Instance> SetConfig for Spim<'d, T> { type Config = Config; type ConfigError = (); fn set_config(&mut self, config: &Self::Config) -> Result<(), Self::ConfigError> { let r = T::regs(); // Configure mode. let mode = config.mode; r.config.write(|w| { match mode { MODE_0 => { w.order().variant(config.bit_order); w.cpol().active_high(); w.cpha().leading(); } MODE_1 => { w.order().variant(config.bit_order); w.cpol().active_high(); w.cpha().trailing(); } MODE_2 => { w.order().variant(config.bit_order); w.cpol().active_low(); w.cpha().leading(); } MODE_3 => { w.order().variant(config.bit_order); w.cpol().active_low(); w.cpha().trailing(); } } w }); // Configure frequency. let frequency = config.frequency; r.frequency.write(|w| w.frequency().variant(frequency)); // Set over-read character let orc = config.orc; r.orc.write(|w| unsafe { w.orc().bits(orc) }); Ok(()) } }