use embedded_storage::nor_flash::{NorFlash, NorFlashError, NorFlashErrorKind}; use embedded_storage_async::nor_flash::NorFlash as AsyncNorFlash; use crate::{Partition, State, BOOT_MAGIC, SWAP_MAGIC}; /// Errors returned by FirmwareUpdater #[derive(Debug)] pub enum FirmwareUpdaterError { /// Error from flash. Flash(NorFlashErrorKind), /// Signature errors. Signature(signature::Error), } #[cfg(feature = "defmt")] impl defmt::Format for FirmwareUpdaterError { fn format(&self, fmt: defmt::Formatter) { match self { FirmwareUpdaterError::Flash(_) => defmt::write!(fmt, "FirmwareUpdaterError::Flash(_)"), FirmwareUpdaterError::Signature(_) => defmt::write!(fmt, "FirmwareUpdaterError::Signature(_)"), } } } impl From for FirmwareUpdaterError where E: NorFlashError, { fn from(error: E) -> Self { FirmwareUpdaterError::Flash(error.kind()) } } /// FirmwareUpdater is an application API for interacting with the BootLoader without the ability to /// 'mess up' the internal bootloader state pub struct FirmwareUpdater { state: Partition, dfu: Partition, } impl Default for FirmwareUpdater { fn default() -> Self { extern "C" { static __bootloader_state_start: u32; static __bootloader_state_end: u32; static __bootloader_dfu_start: u32; static __bootloader_dfu_end: u32; } let dfu = unsafe { Partition::new( &__bootloader_dfu_start as *const u32 as usize, &__bootloader_dfu_end as *const u32 as usize, ) }; let state = unsafe { Partition::new( &__bootloader_state_start as *const u32 as usize, &__bootloader_state_end as *const u32 as usize, ) }; trace!("DFU: 0x{:x} - 0x{:x}", dfu.from, dfu.to); trace!("STATE: 0x{:x} - 0x{:x}", state.from, state.to); FirmwareUpdater::new(dfu, state) } } impl FirmwareUpdater { /// Create a firmware updater instance with partition ranges for the update and state partitions. pub const fn new(dfu: Partition, state: Partition) -> Self { Self { dfu, state } } /// Return the length of the DFU area pub fn firmware_len(&self) -> usize { self.dfu.len() } /// Obtain the current state. /// /// This is useful to check if the bootloader has just done a swap, in order /// to do verifications and self-tests of the new image before calling /// `mark_booted`. pub async fn get_state( &mut self, state_flash: &mut F, aligned: &mut [u8], ) -> Result { self.state.read(state_flash, 0, aligned).await?; if !aligned.iter().any(|&b| b != SWAP_MAGIC) { Ok(State::Swap) } else { Ok(State::Boot) } } /// Verify the DFU given a public key. If there is an error then DO NOT /// proceed with updating the firmware as it must be signed with a /// corresponding private key (otherwise it could be malicious firmware). /// /// Mark to trigger firmware swap on next boot if verify suceeds. /// /// If the "ed25519-salty" feature is set (or another similar feature) then the signature is expected to have /// been generated from a SHA-512 digest of the firmware bytes. /// /// If no signature feature is set then this method will always return a /// signature error. /// /// # Safety /// /// The `_aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being read from /// and written to. #[cfg(feature = "_verify")] pub async fn verify_and_mark_updated( &mut self, _state_and_dfu_flash: &mut F, _public_key: &[u8], _signature: &[u8], _update_len: u32, _aligned: &mut [u8], ) -> Result<(), FirmwareUpdaterError> { let _read_size = _aligned.len(); assert_eq!(_aligned.len(), F::WRITE_SIZE); assert!(_update_len <= self.dfu.len() as u32); #[cfg(feature = "ed25519-dalek")] { use ed25519_dalek::{Digest, PublicKey, Sha512, Signature, SignatureError, Verifier}; let into_signature_error = |e: SignatureError| FirmwareUpdaterError::Signature(e.into()); let public_key = PublicKey::from_bytes(_public_key).map_err(into_signature_error)?; let signature = Signature::from_bytes(_signature).map_err(into_signature_error)?; let mut digest = Sha512::new(); self.incremental_hash(_state_and_dfu_flash, _update_len, _aligned, |x| digest.update(x)) .await?; public_key .verify(&digest.finalize(), &signature) .map_err(into_signature_error)? } #[cfg(feature = "ed25519-salty")] { use salty::constants::{PUBLICKEY_SERIALIZED_LENGTH, SIGNATURE_SERIALIZED_LENGTH}; use salty::{PublicKey, Sha512, Signature}; fn into_signature_error(_: E) -> FirmwareUpdaterError { FirmwareUpdaterError::Signature(signature::Error::default()) } let public_key: [u8; PUBLICKEY_SERIALIZED_LENGTH] = _public_key.try_into().map_err(into_signature_error)?; let public_key = PublicKey::try_from(&public_key).map_err(into_signature_error)?; let signature: [u8; SIGNATURE_SERIALIZED_LENGTH] = _signature.try_into().map_err(into_signature_error)?; let signature = Signature::try_from(&signature).map_err(into_signature_error)?; let mut digest = Sha512::new(); self.incremental_hash(_state_and_dfu_flash, _update_len, _aligned, |x| digest.update(x)) .await?; let message = digest.finalize(); let r = public_key.verify(&message, &signature); trace!( "Verifying with public key {}, signature {} and message {} yields ok: {}", public_key.to_bytes(), signature.to_bytes(), message, r.is_ok() ); r.map_err(into_signature_error)? } self.set_magic(_aligned, SWAP_MAGIC, _state_and_dfu_flash).await } /// Iterate through the DFU and process all bytes with the provided closure. pub async fn incremental_hash( &mut self, dfu_flash: &mut F, update_len: u32, aligned: &mut [u8], mut update: impl FnMut(&[u8]), ) -> Result<(), FirmwareUpdaterError> { for offset in (0..update_len).step_by(aligned.len()) { self.dfu.read(dfu_flash, offset, aligned).await?; let len = core::cmp::min((update_len - offset) as usize, aligned.len()); update(&aligned[..len]); } Ok(()) } /// Mark to trigger firmware swap on next boot. /// /// # Safety /// /// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to. #[cfg(not(feature = "_verify"))] pub async fn mark_updated( &mut self, state_flash: &mut F, aligned: &mut [u8], ) -> Result<(), FirmwareUpdaterError> { assert_eq!(aligned.len(), F::WRITE_SIZE); self.set_magic(aligned, SWAP_MAGIC, state_flash).await } /// Mark firmware boot successful and stop rollback on reset. /// /// # Safety /// /// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to. pub async fn mark_booted( &mut self, state_flash: &mut F, aligned: &mut [u8], ) -> Result<(), FirmwareUpdaterError> { assert_eq!(aligned.len(), F::WRITE_SIZE); self.set_magic(aligned, BOOT_MAGIC, state_flash).await } async fn set_magic( &mut self, aligned: &mut [u8], magic: u8, state_flash: &mut F, ) -> Result<(), FirmwareUpdaterError> { self.state.read(state_flash, 0, aligned).await?; if aligned.iter().any(|&b| b != magic) { aligned.fill(0); self.state.write(state_flash, 0, aligned).await?; self.state.wipe(state_flash).await?; aligned.fill(magic); self.state.write(state_flash, 0, aligned).await?; } Ok(()) } /// Write data to a flash page. /// /// The buffer must follow alignment requirements of the target flash and a multiple of page size big. /// /// # Safety /// /// Failing to meet alignment and size requirements may result in a panic. pub async fn write_firmware( &mut self, offset: usize, data: &[u8], dfu_flash: &mut F, ) -> Result<(), FirmwareUpdaterError> { assert!(data.len() >= F::ERASE_SIZE); self.dfu .erase(dfu_flash, offset as u32, (offset + data.len()) as u32) .await?; self.dfu.write(dfu_flash, offset as u32, data).await?; Ok(()) } /// Prepare for an incoming DFU update by erasing the entire DFU area and /// returning its `Partition`. /// /// Using this instead of `write_firmware` allows for an optimized API in /// exchange for added complexity. pub async fn prepare_update( &mut self, dfu_flash: &mut F, ) -> Result { self.dfu.wipe(dfu_flash).await?; Ok(self.dfu) } // // Blocking API // /// Obtain the current state. /// /// This is useful to check if the bootloader has just done a swap, in order /// to do verifications and self-tests of the new image before calling /// `mark_booted`. pub fn get_state_blocking( &mut self, state_flash: &mut F, aligned: &mut [u8], ) -> Result { self.state.read_blocking(state_flash, 0, aligned)?; if !aligned.iter().any(|&b| b != SWAP_MAGIC) { Ok(State::Swap) } else { Ok(State::Boot) } } /// Verify the DFU given a public key. If there is an error then DO NOT /// proceed with updating the firmware as it must be signed with a /// corresponding private key (otherwise it could be malicious firmware). /// /// Mark to trigger firmware swap on next boot if verify suceeds. /// /// If the "ed25519-salty" feature is set (or another similar feature) then the signature is expected to have /// been generated from a SHA-512 digest of the firmware bytes. /// /// If no signature feature is set then this method will always return a /// signature error. /// /// # Safety /// /// The `_aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being read from /// and written to. #[cfg(feature = "_verify")] pub fn verify_and_mark_updated_blocking( &mut self, _state_and_dfu_flash: &mut F, _public_key: &[u8], _signature: &[u8], _update_len: u32, _aligned: &mut [u8], ) -> Result<(), FirmwareUpdaterError> { let _read_size = _aligned.len(); assert_eq!(_aligned.len(), F::WRITE_SIZE); assert!(_update_len <= self.dfu.len() as u32); #[cfg(feature = "ed25519-dalek")] { use ed25519_dalek::{Digest, PublicKey, Sha512, Signature, SignatureError, Verifier}; let into_signature_error = |e: SignatureError| FirmwareUpdaterError::Signature(e.into()); let public_key = PublicKey::from_bytes(_public_key).map_err(into_signature_error)?; let signature = Signature::from_bytes(_signature).map_err(into_signature_error)?; let mut digest = Sha512::new(); self.incremental_hash_blocking(_state_and_dfu_flash, _update_len, _aligned, |x| digest.update(x))?; public_key .verify(&digest.finalize(), &signature) .map_err(into_signature_error)? } #[cfg(feature = "ed25519-salty")] { use salty::constants::{PUBLICKEY_SERIALIZED_LENGTH, SIGNATURE_SERIALIZED_LENGTH}; use salty::{PublicKey, Sha512, Signature}; fn into_signature_error(_: E) -> FirmwareUpdaterError { FirmwareUpdaterError::Signature(signature::Error::default()) } let public_key: [u8; PUBLICKEY_SERIALIZED_LENGTH] = _public_key.try_into().map_err(into_signature_error)?; let public_key = PublicKey::try_from(&public_key).map_err(into_signature_error)?; let signature: [u8; SIGNATURE_SERIALIZED_LENGTH] = _signature.try_into().map_err(into_signature_error)?; let signature = Signature::try_from(&signature).map_err(into_signature_error)?; let mut digest = Sha512::new(); self.incremental_hash_blocking(_state_and_dfu_flash, _update_len, _aligned, |x| digest.update(x))?; let message = digest.finalize(); let r = public_key.verify(&message, &signature); trace!( "Verifying with public key {}, signature {} and message {} yields ok: {}", public_key.to_bytes(), signature.to_bytes(), message, r.is_ok() ); r.map_err(into_signature_error)? } self.set_magic_blocking(_aligned, SWAP_MAGIC, _state_and_dfu_flash) } /// Iterate through the DFU and process all bytes with the provided closure. pub fn incremental_hash_blocking( &mut self, dfu_flash: &mut F, update_len: u32, aligned: &mut [u8], mut update: impl FnMut(&[u8]), ) -> Result<(), FirmwareUpdaterError> { for offset in (0..update_len).step_by(aligned.len()) { self.dfu.read_blocking(dfu_flash, offset, aligned)?; let len = core::cmp::min((update_len - offset) as usize, aligned.len()); update(&aligned[..len]); } Ok(()) } /// Mark to trigger firmware swap on next boot. /// /// # Safety /// /// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to. #[cfg(not(feature = "_verify"))] pub fn mark_updated_blocking( &mut self, state_flash: &mut F, aligned: &mut [u8], ) -> Result<(), FirmwareUpdaterError> { assert_eq!(aligned.len(), F::WRITE_SIZE); self.set_magic_blocking(aligned, SWAP_MAGIC, state_flash) } /// Mark firmware boot successful and stop rollback on reset. /// /// # Safety /// /// The `aligned` buffer must have a size of F::WRITE_SIZE, and follow the alignment rules for the flash being written to. pub fn mark_booted_blocking( &mut self, state_flash: &mut F, aligned: &mut [u8], ) -> Result<(), FirmwareUpdaterError> { assert_eq!(aligned.len(), F::WRITE_SIZE); self.set_magic_blocking(aligned, BOOT_MAGIC, state_flash) } fn set_magic_blocking( &mut self, aligned: &mut [u8], magic: u8, state_flash: &mut F, ) -> Result<(), FirmwareUpdaterError> { self.state.read_blocking(state_flash, 0, aligned)?; if aligned.iter().any(|&b| b != magic) { aligned.fill(0); self.state.write_blocking(state_flash, 0, aligned)?; self.state.wipe_blocking(state_flash)?; aligned.fill(magic); self.state.write_blocking(state_flash, 0, aligned)?; } Ok(()) } /// Write data to a flash page. /// /// The buffer must follow alignment requirements of the target flash and a multiple of page size big. /// /// # Safety /// /// Failing to meet alignment and size requirements may result in a panic. pub fn write_firmware_blocking( &mut self, offset: usize, data: &[u8], dfu_flash: &mut F, ) -> Result<(), FirmwareUpdaterError> { assert!(data.len() >= F::ERASE_SIZE); self.dfu .erase_blocking(dfu_flash, offset as u32, (offset + data.len()) as u32)?; self.dfu.write_blocking(dfu_flash, offset as u32, data)?; Ok(()) } /// Prepare for an incoming DFU update by erasing the entire DFU area and /// returning its `Partition`. /// /// Using this instead of `write_firmware_blocking` allows for an optimized /// API in exchange for added complexity. pub fn prepare_update_blocking(&mut self, flash: &mut F) -> Result { self.dfu.wipe_blocking(flash)?; Ok(self.dfu) } }