use core::marker::PhantomData; use core::ptr; use core::sync::atomic::{AtomicPtr, Ordering}; use core::task::Poll; use embassy::waitqueue::AtomicWaker; use embassy_hal_common::drop::OnDrop; use embassy_hal_common::unborrow; use futures::future::poll_fn; use crate::interrupt::InterruptExt; use crate::peripherals::RNG; use crate::{interrupt, pac, Unborrow}; impl RNG { fn regs() -> &'static pac::rng::RegisterBlock { unsafe { &*pac::RNG::ptr() } } } static STATE: State = State { ptr: AtomicPtr::new(ptr::null_mut()), end: AtomicPtr::new(ptr::null_mut()), waker: AtomicWaker::new(), }; struct State { ptr: AtomicPtr, end: AtomicPtr, waker: AtomicWaker, } /// A wrapper around an nRF RNG peripheral. /// /// It has a non-blocking API, and a blocking api through `rand`. pub struct Rng<'d> { irq: interrupt::RNG, phantom: PhantomData<(&'d mut RNG, &'d mut interrupt::RNG)>, } impl<'d> Rng<'d> { /// Creates a new RNG driver from the `RNG` peripheral and interrupt. /// /// SAFETY: The future returned from `fill_bytes` must not have its lifetime end without running its destructor, /// e.g. using `mem::forget`. /// /// The synchronous API is safe. pub fn new(_rng: impl Unborrow + 'd, irq: impl Unborrow + 'd) -> Self { unborrow!(irq); let this = Self { irq, phantom: PhantomData, }; this.stop(); this.disable_irq(); this.irq.set_handler(Self::on_interrupt); this.irq.unpend(); this.irq.enable(); this } fn on_interrupt(_: *mut ()) { // Clear the event. RNG::regs().events_valrdy.reset(); // Mutate the slice within a critical section, // so that the future isn't dropped in between us loading the pointer and actually dereferencing it. let (ptr, end) = critical_section::with(|_| { let ptr = STATE.ptr.load(Ordering::Relaxed); // We need to make sure we haven't already filled the whole slice, // in case the interrupt fired again before the executor got back to the future. let end = STATE.end.load(Ordering::Relaxed); if !ptr.is_null() && ptr != end { // If the future was dropped, the pointer would have been set to null, // so we're still good to mutate the slice. // The safety contract of `Rng::new` means that the future can't have been dropped // without calling its destructor. unsafe { *ptr = RNG::regs().value.read().value().bits(); } } (ptr, end) }); if ptr.is_null() || ptr == end { // If the future was dropped, there's nothing to do. // If `ptr == end`, we were called by mistake, so return. return; } let new_ptr = unsafe { ptr.add(1) }; match STATE .ptr .compare_exchange(ptr, new_ptr, Ordering::Relaxed, Ordering::Relaxed) { Ok(_) => { let end = STATE.end.load(Ordering::Relaxed); // It doesn't matter if `end` was changed under our feet, because then this will just be false. if new_ptr == end { STATE.waker.wake(); } } Err(_) => { // If the future was dropped or finished, there's no point trying to wake it. // It will have already stopped the RNG, so there's no need to do that either. } } } fn stop(&self) { RNG::regs().tasks_stop.write(|w| unsafe { w.bits(1) }) } fn start(&self) { RNG::regs().tasks_start.write(|w| unsafe { w.bits(1) }) } fn enable_irq(&self) { RNG::regs().intenset.write(|w| w.valrdy().set()); } fn disable_irq(&self) { RNG::regs().intenclr.write(|w| w.valrdy().clear()); } /// Enable or disable the RNG's bias correction. /// /// Bias correction removes any bias towards a '1' or a '0' in the bits generated. /// However, this makes the generation of numbers slower. /// /// Defaults to disabled. pub fn bias_correction(&self, enable: bool) { RNG::regs().config.write(|w| w.dercen().bit(enable)) } pub async fn fill_bytes(&mut self, dest: &mut [u8]) { if dest.len() == 0 { return; // Nothing to fill } let range = dest.as_mut_ptr_range(); // Even if we've preempted the interrupt, it can't preempt us again, // so we don't need to worry about the order we write these in. STATE.ptr.store(range.start, Ordering::Relaxed); STATE.end.store(range.end, Ordering::Relaxed); self.enable_irq(); self.start(); let on_drop = OnDrop::new(|| { self.stop(); self.disable_irq(); // The interrupt is now disabled and can't preempt us anymore, so the order doesn't matter here. STATE.ptr.store(ptr::null_mut(), Ordering::Relaxed); STATE.end.store(ptr::null_mut(), Ordering::Relaxed); }); poll_fn(|cx| { STATE.waker.register(cx.waker()); // The interrupt will never modify `end`, so load it first and then get the most up-to-date `ptr`. let end = STATE.end.load(Ordering::Relaxed); let ptr = STATE.ptr.load(Ordering::Relaxed); if ptr == end { // We're done. Poll::Ready(()) } else { Poll::Pending } }) .await; // Trigger the teardown drop(on_drop); } pub fn blocking_fill_bytes(&mut self, dest: &mut [u8]) { self.start(); for byte in dest.iter_mut() { let regs = RNG::regs(); while regs.events_valrdy.read().bits() == 0 {} regs.events_valrdy.reset(); *byte = regs.value.read().value().bits(); } self.stop(); } } impl<'d> Drop for Rng<'d> { fn drop(&mut self) { self.irq.disable() } } impl<'d> rand_core::RngCore for Rng<'d> { fn fill_bytes(&mut self, dest: &mut [u8]) { self.blocking_fill_bytes(dest); } fn next_u32(&mut self) -> u32 { let mut bytes = [0; 4]; self.blocking_fill_bytes(&mut bytes); // We don't care about the endianness, so just use the native one. u32::from_ne_bytes(bytes) } fn next_u64(&mut self) -> u64 { let mut bytes = [0; 8]; self.blocking_fill_bytes(&mut bytes); u64::from_ne_bytes(bytes) } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand_core::Error> { self.blocking_fill_bytes(dest); Ok(()) } } impl<'d> rand_core::CryptoRng for Rng<'d> {}