use core::future::Future; use core::marker::PhantomData; use core::pin::Pin; use core::sync::atomic::{compiler_fence, Ordering}; use core::task::Poll; use embassy::traits; use embassy::util::{wake_on_interrupt, PeripheralBorrow}; use futures::future::poll_fn; use traits::spi::FullDuplex; use crate::gpio::Pin as GpioPin; use crate::interrupt::{self, Interrupt}; use crate::{pac, peripherals, slice_in_ram_or}; pub use embedded_hal::spi::{Mode, Phase, Polarity, MODE_0, MODE_1, MODE_2, MODE_3}; pub use pac::spim0::frequency::FREQUENCY_A as Frequency; #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[cfg_attr(feature = "defmt", derive(defmt::Format))] #[non_exhaustive] pub enum Error { TxBufferTooLong, RxBufferTooLong, /// EasyDMA can only read from data memory, read only buffers in flash will fail. DMABufferNotInDataMemory, } pub struct Spim<'d, T: Instance> { spim: T, irq: T::Interrupt, phantom: PhantomData<&'d mut T>, } pub struct Config { pub frequency: Frequency, pub mode: Mode, pub orc: u8, } impl<'d, T: Instance> Spim<'d, T> { pub fn new( spim: impl PeripheralBorrow + 'd, irq: impl PeripheralBorrow + 'd, sck: impl PeripheralBorrow + 'd, miso: impl PeripheralBorrow + 'd, mosi: impl PeripheralBorrow + 'd, config: Config, ) -> Self { let mut spim = unsafe { spim.unborrow() }; let irq = unsafe { irq.unborrow() }; let sck = unsafe { sck.unborrow() }; let miso = unsafe { miso.unborrow() }; let mosi = unsafe { mosi.unborrow() }; let r = spim.regs(); // Configure pins sck.conf().write(|w| w.dir().output()); mosi.conf().write(|w| w.dir().output()); miso.conf().write(|w| w.input().connect()); match config.mode.polarity { Polarity::IdleHigh => { sck.set_high(); mosi.set_high(); } Polarity::IdleLow => { sck.set_low(); mosi.set_low(); } } // Select pins. r.psel.sck.write(|w| { unsafe { w.bits(sck.psel_bits()) }; w.connect().connected() }); r.psel.mosi.write(|w| { unsafe { w.bits(mosi.psel_bits()) }; w.connect().connected() }); r.psel.miso.write(|w| { unsafe { w.bits(miso.psel_bits()) }; w.connect().connected() }); // Enable SPIM instance. r.enable.write(|w| w.enable().enabled()); // Configure mode. let mode = config.mode; r.config.write(|w| { // Can't match on `mode` due to embedded-hal, see https://github.com/rust-embedded/embedded-hal/pull/126 if mode == MODE_0 { w.order().msb_first(); w.cpol().active_high(); w.cpha().leading(); } else if mode == MODE_1 { w.order().msb_first(); w.cpol().active_high(); w.cpha().trailing(); } else if mode == MODE_2 { w.order().msb_first(); w.cpol().active_low(); w.cpha().leading(); } else { w.order().msb_first(); w.cpol().active_low(); w.cpha().trailing(); } w }); // Configure frequency. let frequency = config.frequency; r.frequency.write(|w| w.frequency().variant(frequency)); // Set over-read character let orc = config.orc; r.orc.write(|w| // The ORC field is 8 bits long, so any u8 is a valid value to write. unsafe { w.orc().bits(orc) }); // Disable all events interrupts r.intenclr.write(|w| unsafe { w.bits(0xFFFF_FFFF) }); Self { spim, irq, phantom: PhantomData, } } } impl<'d, T: Instance> FullDuplex for Spim<'d, T> { type Error = Error; #[rustfmt::skip] type WriteFuture<'a> where Self: 'a = impl Future> + 'a; #[rustfmt::skip] type ReadFuture<'a> where Self: 'a = impl Future> + 'a; #[rustfmt::skip] type WriteReadFuture<'a> where Self: 'a = impl Future> + 'a; fn read<'a>(self: Pin<&'a mut Self>, data: &'a mut [u8]) -> Self::ReadFuture<'a> { self.read_write(data, &[]) } fn write<'a>(self: Pin<&'a mut Self>, data: &'a [u8]) -> Self::WriteFuture<'a> { self.read_write(&mut [], data) } fn read_write<'a>( self: Pin<&'a mut Self>, rx: &'a mut [u8], tx: &'a [u8], ) -> Self::WriteReadFuture<'a> { async move { let this = unsafe { self.get_unchecked_mut() }; slice_in_ram_or(rx, Error::DMABufferNotInDataMemory)?; slice_in_ram_or(tx, Error::DMABufferNotInDataMemory)?; // Conservative compiler fence to prevent optimizations that do not // take in to account actions by DMA. The fence has been placed here, // before any DMA action has started. compiler_fence(Ordering::SeqCst); let r = this.spim.regs(); // Set up the DMA write. r.txd .ptr .write(|w| unsafe { w.ptr().bits(tx.as_ptr() as u32) }); r.txd .maxcnt .write(|w| unsafe { w.maxcnt().bits(tx.len() as _) }); // Set up the DMA read. r.rxd .ptr .write(|w| unsafe { w.ptr().bits(rx.as_mut_ptr() as u32) }); r.rxd .maxcnt .write(|w| unsafe { w.maxcnt().bits(rx.len() as _) }); // Reset and enable the event r.events_end.reset(); r.intenset.write(|w| w.end().set()); // Start SPI transaction. r.tasks_start.write(|w| unsafe { w.bits(1) }); // Conservative compiler fence to prevent optimizations that do not // take in to account actions by DMA. The fence has been placed here, // after all possible DMA actions have completed. compiler_fence(Ordering::SeqCst); // Wait for 'end' event. poll_fn(|cx| { let r = this.spim.regs(); if r.events_end.read().bits() != 0 { r.events_end.reset(); return Poll::Ready(()); } wake_on_interrupt(&mut this.irq, cx.waker()); Poll::Pending }) .await; Ok(()) } } } mod sealed { use super::*; pub trait Instance { fn regs(&mut self) -> &pac::spim0::RegisterBlock; } } pub trait Instance: sealed::Instance + 'static { type Interrupt: Interrupt; } macro_rules! make_impl { ($type:ident, $irq:ident) => { impl sealed::Instance for peripherals::$type { fn regs(&mut self) -> &pac::spim0::RegisterBlock { unsafe { &*pac::$type::ptr() } } } impl Instance for peripherals::$type { type Interrupt = interrupt::$irq; } }; } #[cfg(feature = "52810")] make_impl!(SPIM0, SPIM0_SPIS0_SPI0); #[cfg(not(feature = "52810"))] make_impl!(SPIM0, SPIM0_SPIS0_TWIM0_TWIS0_SPI0_TWI0); #[cfg(any(feature = "52832", feature = "52833", feature = "52840"))] make_impl!(SPIM1, SPIM1_SPIS1_TWIM1_TWIS1_SPI1_TWI1); #[cfg(any(feature = "52832", feature = "52833", feature = "52840"))] make_impl!(SPIM2, SPIM2_SPIS2_SPI2); #[cfg(any(feature = "52833", feature = "52840"))] make_impl!(SPIM3, SPIM3);