//! # GPIO 'Blinky' Example //! //! This application demonstrates how to control a GPIO pin on the RP2040. //! //! It may need to be adapted to your particular board layout and/or pin assignment. //! //! See the `Cargo.toml` file for Copyright and license details. #![no_std] #![no_main] mod gcc_hid; use core::fmt::Write; use defmt::{error, info, Debug2Format}; use gcc_hid::{GcConfig, GcReport}; use fugit::ExtU32; // Ensure we halt the program on panic (if we don't mention this crate it won't // be linked) use defmt_rtt as _; use panic_halt as _; // Alias for our HAL crate use rp2040_hal as hal; // A shorter alias for the Peripheral Access Crate, which provides low-level // register access use hal::{ gpio::FunctionUart, pac, uart::{UartConfig, UartPeripheral}, }; // Some traits we need use embedded_hal::{blocking::delay::DelayMs, digital::v2::OutputPin, timer::CountDown}; use rp2040_hal::Clock; use usb_device::{ bus::UsbBusAllocator, device::{UsbDeviceBuilder, UsbVidPid}, }; use usbd_human_interface_device::{usb_class::UsbHidClassBuilder, UsbHidError}; /// The linker will place this boot block at the start of our program image. We /// need this to help the ROM bootloader get our code up and running. /// Note: This boot block is not necessary when using a rp-hal based BSP /// as the BSPs already perform this step. #[link_section = ".boot2"] #[used] pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; /// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust /// if your board has a different frequency const XTAL_FREQ_HZ: u32 = 12_000_000u32; /// Entry point to our bare-metal application. /// /// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function /// as soon as all global variables and the spinlock are initialised. /// /// The function configures the RP2040 peripherals, then toggles a GPIO pin in /// an infinite loop. If there is an LED connected to that pin, it will blink. #[rp2040_hal::entry] fn main() -> ! { // Grab our singleton objects let mut pac = pac::Peripherals::take().unwrap(); // Set up the watchdog driver - needed by the clock setup code let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); // Configure the clocks let clocks = hal::clocks::init_clocks_and_plls( XTAL_FREQ_HZ, pac.XOSC, pac.CLOCKS, pac.PLL_SYS, pac.PLL_USB, &mut pac.RESETS, &mut watchdog, ) .ok() .unwrap(); let mut timer = rp2040_hal::Timer::new(pac.TIMER, &mut pac.RESETS, &clocks); let mut poll_timer = timer.count_down(); poll_timer.start(10.millis()); // The single-cycle I/O block controls our GPIO pins let sio = hal::Sio::new(pac.SIO); // Set the pins to their default state let pins = hal::gpio::Pins::new( pac.IO_BANK0, pac.PADS_BANK0, sio.gpio_bank0, &mut pac.RESETS, ); let mut gcc_state = GcReport::default(); // usb parts let usb_bus = UsbBusAllocator::new(hal::usb::UsbBus::new( pac.USBCTRL_REGS, pac.USBCTRL_DPRAM, clocks.usb_clock, true, &mut pac.RESETS, )); let mut gcc = UsbHidClassBuilder::new() .add_device(GcConfig::default()) .build(&usb_bus); let mut usb_dev = UsbDeviceBuilder::new(&usb_bus, UsbVidPid(0x057e, 0x0337)) .manufacturer("Naxdy") .product("NaxGCC") .serial_number("fleeb") .device_class(0) .device_protocol(0) .device_sub_class(0) .self_powered(false) .max_power(500) .max_packet_size_0(64) .build(); let mut uart = UartPeripheral::new( pac.UART0, ( pins.gpio0.into_mode::<FunctionUart>(), pins.gpio1.into_mode(), ), &mut pac.RESETS, ) .enable(UartConfig::default(), clocks.peripheral_clock.freq()) .unwrap(); gcc_state.buttons_1.button_a = true; // Configure GPIO25 as an output let mut led_pin = pins.gpio25.into_push_pull_output(); info!("Bleg"); let _ = uart.write_str("FLAR"); loop { if poll_timer.wait().is_ok() { match gcc.device().write_report(&gcc_state) { Err(UsbHidError::WouldBlock) => {} Ok(_) => {} Err(e) => { led_pin.set_high().unwrap(); error!("Error: {:?}", Debug2Format(&e)); panic!(); } } } if usb_dev.poll(&mut [&mut gcc]) {} } }