rjx-mirror/Ryujinx.Graphics.OpenGL/Pipeline.cs
riperiperi 79adba4402
Add support for render scale to vertex stage. (#2763)
* Add support for render scale to vertex stage.

Occasionally games read off textureSize on the vertex stage to inform the fragment shader what size a texture is without querying in there. Scales were not present in the vertex shader to correct the sizes, so games were providing the raw upscaled texture size to the fragment shader, which was incorrect.

One downside is that the fragment and vertex support buffer description must be identical, so the full size scales array must be defined when used. I don't think this will have an impact though. Another is that the fragment texture count must be updated when vertex shader textures are used. I'd like to correct this so that the update is folded into the update for the scales.

Also cleans up a bunch of things, like it making no sense to call CommitRenderScale for each stage.

Fixes render scale causing a weird offset bloom in Super Mario Party and Clubhouse Games. Clubhouse Games still has a pixelated look in a number of its games due to something else it does in the shader.

* Split out support buffer update, lazy updates.

* Commit support buffer before compute dispatch

* Remove unnecessary qualifier.

* Address Feedback
2022-01-08 14:48:48 -03:00

1535 lines
48 KiB
C#

using OpenTK.Graphics.OpenGL;
using Ryujinx.Common.Logging;
using Ryujinx.Graphics.GAL;
using Ryujinx.Graphics.OpenGL.Image;
using Ryujinx.Graphics.OpenGL.Queries;
using Ryujinx.Graphics.Shader;
using System;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
namespace Ryujinx.Graphics.OpenGL
{
class Pipeline : IPipeline, IDisposable
{
private readonly DrawTextureEmulation _drawTexture;
internal ulong DrawCount { get; private set; }
private Program _program;
private bool _rasterizerDiscard;
private VertexArray _vertexArray;
private Framebuffer _framebuffer;
private IntPtr _indexBaseOffset;
private DrawElementsType _elementsType;
private PrimitiveType _primitiveType;
private int _stencilFrontMask;
private bool _depthMask;
private bool _depthTestEnable;
private bool _stencilTestEnable;
private bool _cullEnable;
private float[] _viewportArray = Array.Empty<float>();
private double[] _depthRangeArray = Array.Empty<double>();
private int _boundDrawFramebuffer;
private int _boundReadFramebuffer;
private CounterQueueEvent _activeConditionalRender;
private Vector4<int>[] _fpIsBgra = new Vector4<int>[SupportBuffer.FragmentIsBgraCount];
private Vector4<float>[] _renderScale = new Vector4<float>[65];
private int _fragmentScaleCount;
private TextureBase _unit0Texture;
private Sampler _unit0Sampler;
private FrontFaceDirection _frontFace;
private ClipOrigin _clipOrigin;
private ClipDepthMode _clipDepthMode;
private readonly uint[] _componentMasks;
private uint _scissorEnables;
private bool _tfEnabled;
private TransformFeedbackPrimitiveType _tfTopology;
private SupportBufferUpdater _supportBuffer;
private readonly BufferHandle[] _tfbs;
private readonly BufferRange[] _tfbTargets;
private ColorF _blendConstant;
internal Pipeline()
{
_drawTexture = new DrawTextureEmulation();
_rasterizerDiscard = false;
_clipOrigin = ClipOrigin.LowerLeft;
_clipDepthMode = ClipDepthMode.NegativeOneToOne;
_componentMasks = new uint[Constants.MaxRenderTargets];
for (int index = 0; index < Constants.MaxRenderTargets; index++)
{
_componentMasks[index] = 0xf;
}
var defaultScale = new Vector4<float> { X = 1f, Y = 0f, Z = 0f, W = 0f };
new Span<Vector4<float>>(_renderScale).Fill(defaultScale);
_tfbs = new BufferHandle[Constants.MaxTransformFeedbackBuffers];
_tfbTargets = new BufferRange[Constants.MaxTransformFeedbackBuffers];
}
public void Initialize(Renderer renderer)
{
_supportBuffer = new SupportBufferUpdater(renderer);
GL.BindBufferBase(BufferRangeTarget.UniformBuffer, 0, Unsafe.As<BufferHandle, int>(ref _supportBuffer.Handle));
_supportBuffer.UpdateFragmentIsBgra(_fpIsBgra, 0, SupportBuffer.FragmentIsBgraCount);
_supportBuffer.UpdateRenderScale(_renderScale, 0, SupportBuffer.RenderScaleMaxCount);
}
public void Barrier()
{
GL.MemoryBarrier(MemoryBarrierFlags.AllBarrierBits);
}
public void BeginTransformFeedback(PrimitiveTopology topology)
{
GL.BeginTransformFeedback(_tfTopology = topology.ConvertToTfType());
_tfEnabled = true;
}
public void ClearBuffer(BufferHandle destination, int offset, int size, uint value)
{
Buffer.Clear(destination, offset, size, value);
}
public void ClearRenderTargetColor(int index, uint componentMask, ColorF color)
{
GL.ColorMask(
index,
(componentMask & 1) != 0,
(componentMask & 2) != 0,
(componentMask & 4) != 0,
(componentMask & 8) != 0);
float[] colors = new float[] { color.Red, color.Green, color.Blue, color.Alpha };
GL.ClearBuffer(OpenTK.Graphics.OpenGL.ClearBuffer.Color, index, colors);
RestoreComponentMask(index);
}
public void ClearRenderTargetDepthStencil(float depthValue, bool depthMask, int stencilValue, int stencilMask)
{
bool stencilMaskChanged =
stencilMask != 0 &&
stencilMask != _stencilFrontMask;
bool depthMaskChanged = depthMask && depthMask != _depthMask;
if (stencilMaskChanged)
{
GL.StencilMaskSeparate(StencilFace.Front, stencilMask);
}
if (depthMaskChanged)
{
GL.DepthMask(depthMask);
}
if (depthMask && stencilMask != 0)
{
GL.ClearBuffer(ClearBufferCombined.DepthStencil, 0, depthValue, stencilValue);
}
else if (depthMask)
{
GL.ClearBuffer(OpenTK.Graphics.OpenGL.ClearBuffer.Depth, 0, ref depthValue);
}
else if (stencilMask != 0)
{
GL.ClearBuffer(OpenTK.Graphics.OpenGL.ClearBuffer.Stencil, 0, ref stencilValue);
}
if (stencilMaskChanged)
{
GL.StencilMaskSeparate(StencilFace.Front, _stencilFrontMask);
}
if (depthMaskChanged)
{
GL.DepthMask(_depthMask);
}
}
public void CommandBufferBarrier()
{
GL.MemoryBarrier(MemoryBarrierFlags.CommandBarrierBit);
}
public void CopyBuffer(BufferHandle source, BufferHandle destination, int srcOffset, int dstOffset, int size)
{
Buffer.Copy(source, destination, srcOffset, dstOffset, size);
}
public void DispatchCompute(int groupsX, int groupsY, int groupsZ)
{
if (!_program.IsLinked)
{
Logger.Debug?.Print(LogClass.Gpu, "Dispatch error, shader not linked.");
return;
}
PrepareForDispatch();
GL.DispatchCompute(groupsX, groupsY, groupsZ);
}
public void Draw(int vertexCount, int instanceCount, int firstVertex, int firstInstance)
{
if (!_program.IsLinked)
{
Logger.Debug?.Print(LogClass.Gpu, "Draw error, shader not linked.");
return;
}
PreDraw();
if (_primitiveType == PrimitiveType.Quads && !HwCapabilities.SupportsQuads)
{
DrawQuadsImpl(vertexCount, instanceCount, firstVertex, firstInstance);
}
else if (_primitiveType == PrimitiveType.QuadStrip && !HwCapabilities.SupportsQuads)
{
DrawQuadStripImpl(vertexCount, instanceCount, firstVertex, firstInstance);
}
else
{
DrawImpl(vertexCount, instanceCount, firstVertex, firstInstance);
}
PostDraw();
}
private void DrawQuadsImpl(
int vertexCount,
int instanceCount,
int firstVertex,
int firstInstance)
{
// TODO: Instanced rendering.
int quadsCount = vertexCount / 4;
int[] firsts = new int[quadsCount];
int[] counts = new int[quadsCount];
for (int quadIndex = 0; quadIndex < quadsCount; quadIndex++)
{
firsts[quadIndex] = firstVertex + quadIndex * 4;
counts[quadIndex] = 4;
}
GL.MultiDrawArrays(
PrimitiveType.TriangleFan,
firsts,
counts,
quadsCount);
}
private void DrawQuadStripImpl(
int vertexCount,
int instanceCount,
int firstVertex,
int firstInstance)
{
int quadsCount = (vertexCount - 2) / 2;
if (firstInstance != 0 || instanceCount != 1)
{
for (int quadIndex = 0; quadIndex < quadsCount; quadIndex++)
{
GL.DrawArraysInstancedBaseInstance(PrimitiveType.TriangleFan, firstVertex + quadIndex * 2, 4, instanceCount, firstInstance);
}
}
else
{
int[] firsts = new int[quadsCount];
int[] counts = new int[quadsCount];
firsts[0] = firstVertex;
counts[0] = 4;
for (int quadIndex = 1; quadIndex < quadsCount; quadIndex++)
{
firsts[quadIndex] = firstVertex + quadIndex * 2;
counts[quadIndex] = 4;
}
GL.MultiDrawArrays(
PrimitiveType.TriangleFan,
firsts,
counts,
quadsCount);
}
}
private void DrawImpl(
int vertexCount,
int instanceCount,
int firstVertex,
int firstInstance)
{
if (firstInstance == 0 && instanceCount == 1)
{
GL.DrawArrays(_primitiveType, firstVertex, vertexCount);
}
else if (firstInstance == 0)
{
GL.DrawArraysInstanced(_primitiveType, firstVertex, vertexCount, instanceCount);
}
else
{
GL.DrawArraysInstancedBaseInstance(
_primitiveType,
firstVertex,
vertexCount,
instanceCount,
firstInstance);
}
}
public void DrawIndexed(
int indexCount,
int instanceCount,
int firstIndex,
int firstVertex,
int firstInstance)
{
if (!_program.IsLinked)
{
Logger.Debug?.Print(LogClass.Gpu, "Draw error, shader not linked.");
return;
}
PreDraw();
int indexElemSize = 1;
switch (_elementsType)
{
case DrawElementsType.UnsignedShort: indexElemSize = 2; break;
case DrawElementsType.UnsignedInt: indexElemSize = 4; break;
}
IntPtr indexBaseOffset = _indexBaseOffset + firstIndex * indexElemSize;
if (_primitiveType == PrimitiveType.Quads && !HwCapabilities.SupportsQuads)
{
DrawQuadsIndexedImpl(
indexCount,
instanceCount,
indexBaseOffset,
indexElemSize,
firstVertex,
firstInstance);
}
else if (_primitiveType == PrimitiveType.QuadStrip && !HwCapabilities.SupportsQuads)
{
DrawQuadStripIndexedImpl(
indexCount,
instanceCount,
indexBaseOffset,
indexElemSize,
firstVertex,
firstInstance);
}
else
{
DrawIndexedImpl(
indexCount,
instanceCount,
indexBaseOffset,
firstVertex,
firstInstance);
}
PostDraw();
}
private void DrawQuadsIndexedImpl(
int indexCount,
int instanceCount,
IntPtr indexBaseOffset,
int indexElemSize,
int firstVertex,
int firstInstance)
{
int quadsCount = indexCount / 4;
if (firstInstance != 0 || instanceCount != 1)
{
if (firstVertex != 0 && firstInstance != 0)
{
for (int quadIndex = 0; quadIndex < quadsCount; quadIndex++)
{
GL.DrawElementsInstancedBaseVertexBaseInstance(
PrimitiveType.TriangleFan,
4,
_elementsType,
indexBaseOffset + quadIndex * 4 * indexElemSize,
instanceCount,
firstVertex,
firstInstance);
}
}
else if (firstInstance != 0)
{
for (int quadIndex = 0; quadIndex < quadsCount; quadIndex++)
{
GL.DrawElementsInstancedBaseInstance(
PrimitiveType.TriangleFan,
4,
_elementsType,
indexBaseOffset + quadIndex * 4 * indexElemSize,
instanceCount,
firstInstance);
}
}
else
{
for (int quadIndex = 0; quadIndex < quadsCount; quadIndex++)
{
GL.DrawElementsInstanced(
PrimitiveType.TriangleFan,
4,
_elementsType,
indexBaseOffset + quadIndex * 4 * indexElemSize,
instanceCount);
}
}
}
else
{
IntPtr[] indices = new IntPtr[quadsCount];
int[] counts = new int[quadsCount];
int[] baseVertices = new int[quadsCount];
for (int quadIndex = 0; quadIndex < quadsCount; quadIndex++)
{
indices[quadIndex] = indexBaseOffset + quadIndex * 4 * indexElemSize;
counts[quadIndex] = 4;
baseVertices[quadIndex] = firstVertex;
}
GL.MultiDrawElementsBaseVertex(
PrimitiveType.TriangleFan,
counts,
_elementsType,
indices,
quadsCount,
baseVertices);
}
}
private void DrawQuadStripIndexedImpl(
int indexCount,
int instanceCount,
IntPtr indexBaseOffset,
int indexElemSize,
int firstVertex,
int firstInstance)
{
// TODO: Instanced rendering.
int quadsCount = (indexCount - 2) / 2;
IntPtr[] indices = new IntPtr[quadsCount];
int[] counts = new int[quadsCount];
int[] baseVertices = new int[quadsCount];
indices[0] = indexBaseOffset;
counts[0] = 4;
baseVertices[0] = firstVertex;
for (int quadIndex = 1; quadIndex < quadsCount; quadIndex++)
{
indices[quadIndex] = indexBaseOffset + quadIndex * 2 * indexElemSize;
counts[quadIndex] = 4;
baseVertices[quadIndex] = firstVertex;
}
GL.MultiDrawElementsBaseVertex(
PrimitiveType.TriangleFan,
counts,
_elementsType,
indices,
quadsCount,
baseVertices);
}
private void DrawIndexedImpl(
int indexCount,
int instanceCount,
IntPtr indexBaseOffset,
int firstVertex,
int firstInstance)
{
if (firstInstance == 0 && firstVertex == 0 && instanceCount == 1)
{
GL.DrawElements(_primitiveType, indexCount, _elementsType, indexBaseOffset);
}
else if (firstInstance == 0 && instanceCount == 1)
{
GL.DrawElementsBaseVertex(
_primitiveType,
indexCount,
_elementsType,
indexBaseOffset,
firstVertex);
}
else if (firstInstance == 0 && firstVertex == 0)
{
GL.DrawElementsInstanced(
_primitiveType,
indexCount,
_elementsType,
indexBaseOffset,
instanceCount);
}
else if (firstInstance == 0)
{
GL.DrawElementsInstancedBaseVertex(
_primitiveType,
indexCount,
_elementsType,
indexBaseOffset,
instanceCount,
firstVertex);
}
else if (firstVertex == 0)
{
GL.DrawElementsInstancedBaseInstance(
_primitiveType,
indexCount,
_elementsType,
indexBaseOffset,
instanceCount,
firstInstance);
}
else
{
GL.DrawElementsInstancedBaseVertexBaseInstance(
_primitiveType,
indexCount,
_elementsType,
indexBaseOffset,
instanceCount,
firstVertex,
firstInstance);
}
}
public void DrawTexture(ITexture texture, ISampler sampler, Extents2DF srcRegion, Extents2DF dstRegion)
{
if (texture is TextureView view && sampler is Sampler samp)
{
_supportBuffer.Commit();
if (HwCapabilities.SupportsDrawTexture)
{
GL.NV.DrawTexture(
view.Handle,
samp.Handle,
dstRegion.X1,
dstRegion.Y1,
dstRegion.X2,
dstRegion.Y2,
0,
srcRegion.X1 / view.Width,
srcRegion.Y1 / view.Height,
srcRegion.X2 / view.Width,
srcRegion.Y2 / view.Height);
}
else
{
static void Disable(EnableCap cap, bool enabled)
{
if (enabled)
{
GL.Disable(cap);
}
}
static void Enable(EnableCap cap, bool enabled)
{
if (enabled)
{
GL.Enable(cap);
}
}
Disable(EnableCap.CullFace, _cullEnable);
Disable(EnableCap.StencilTest, _stencilTestEnable);
Disable(EnableCap.DepthTest, _depthTestEnable);
if (_depthMask)
{
GL.DepthMask(false);
}
if (_tfEnabled)
{
GL.EndTransformFeedback();
}
_drawTexture.Draw(
view,
samp,
dstRegion.X1,
dstRegion.Y1,
dstRegion.X2,
dstRegion.Y2,
srcRegion.X1 / view.Width,
srcRegion.Y1 / view.Height,
srcRegion.X2 / view.Width,
srcRegion.Y2 / view.Height);
_program?.Bind();
_unit0Sampler?.Bind(0);
GL.ViewportArray(0, 1, _viewportArray);
Enable(EnableCap.CullFace, _cullEnable);
Enable(EnableCap.StencilTest, _stencilTestEnable);
Enable(EnableCap.DepthTest, _depthTestEnable);
if (_depthMask)
{
GL.DepthMask(true);
}
if (_tfEnabled)
{
GL.BeginTransformFeedback(_tfTopology);
}
}
}
}
public void EndTransformFeedback()
{
GL.EndTransformFeedback();
_tfEnabled = false;
}
public void MultiDrawIndirectCount(BufferRange indirectBuffer, BufferRange parameterBuffer, int maxDrawCount, int stride)
{
if (!_program.IsLinked)
{
Logger.Debug?.Print(LogClass.Gpu, "Draw error, shader not linked.");
return;
}
PreDraw();
GL.BindBuffer((BufferTarget)All.DrawIndirectBuffer, indirectBuffer.Handle.ToInt32());
GL.BindBuffer((BufferTarget)All.ParameterBuffer, parameterBuffer.Handle.ToInt32());
GL.MultiDrawArraysIndirectCount(
_primitiveType,
(IntPtr)indirectBuffer.Offset,
(IntPtr)parameterBuffer.Offset,
maxDrawCount,
stride);
PostDraw();
}
public void MultiDrawIndexedIndirectCount(BufferRange indirectBuffer, BufferRange parameterBuffer, int maxDrawCount, int stride)
{
if (!_program.IsLinked)
{
Logger.Debug?.Print(LogClass.Gpu, "Draw error, shader not linked.");
return;
}
PreDraw();
_vertexArray.SetRangeOfIndexBuffer();
GL.BindBuffer((BufferTarget)All.DrawIndirectBuffer, indirectBuffer.Handle.ToInt32());
GL.BindBuffer((BufferTarget)All.ParameterBuffer, parameterBuffer.Handle.ToInt32());
GL.MultiDrawElementsIndirectCount(
_primitiveType,
(Version46)_elementsType,
(IntPtr)indirectBuffer.Offset,
(IntPtr)parameterBuffer.Offset,
maxDrawCount,
stride);
_vertexArray.RestoreIndexBuffer();
PostDraw();
}
public void SetAlphaTest(bool enable, float reference, CompareOp op)
{
if (!enable)
{
GL.Disable(EnableCap.AlphaTest);
return;
}
GL.AlphaFunc((AlphaFunction)op.Convert(), reference);
GL.Enable(EnableCap.AlphaTest);
}
public void SetBlendState(int index, BlendDescriptor blend)
{
if (!blend.Enable)
{
GL.Disable(IndexedEnableCap.Blend, index);
return;
}
GL.BlendEquationSeparate(
index,
blend.ColorOp.Convert(),
blend.AlphaOp.Convert());
GL.BlendFuncSeparate(
index,
(BlendingFactorSrc)blend.ColorSrcFactor.Convert(),
(BlendingFactorDest)blend.ColorDstFactor.Convert(),
(BlendingFactorSrc)blend.AlphaSrcFactor.Convert(),
(BlendingFactorDest)blend.AlphaDstFactor.Convert());
static bool IsDualSource(BlendFactor factor)
{
switch (factor)
{
case BlendFactor.Src1Color:
case BlendFactor.Src1ColorGl:
case BlendFactor.Src1Alpha:
case BlendFactor.Src1AlphaGl:
case BlendFactor.OneMinusSrc1Color:
case BlendFactor.OneMinusSrc1ColorGl:
case BlendFactor.OneMinusSrc1Alpha:
case BlendFactor.OneMinusSrc1AlphaGl:
return true;
}
return false;
}
EnsureFramebuffer();
_framebuffer.SetDualSourceBlend(
IsDualSource(blend.ColorSrcFactor) ||
IsDualSource(blend.ColorDstFactor) ||
IsDualSource(blend.AlphaSrcFactor) ||
IsDualSource(blend.AlphaDstFactor));
if (_blendConstant != blend.BlendConstant)
{
_blendConstant = blend.BlendConstant;
GL.BlendColor(
blend.BlendConstant.Red,
blend.BlendConstant.Green,
blend.BlendConstant.Blue,
blend.BlendConstant.Alpha);
}
GL.Enable(IndexedEnableCap.Blend, index);
}
public void SetDepthBias(PolygonModeMask enables, float factor, float units, float clamp)
{
if ((enables & PolygonModeMask.Point) != 0)
{
GL.Enable(EnableCap.PolygonOffsetPoint);
}
else
{
GL.Disable(EnableCap.PolygonOffsetPoint);
}
if ((enables & PolygonModeMask.Line) != 0)
{
GL.Enable(EnableCap.PolygonOffsetLine);
}
else
{
GL.Disable(EnableCap.PolygonOffsetLine);
}
if ((enables & PolygonModeMask.Fill) != 0)
{
GL.Enable(EnableCap.PolygonOffsetFill);
}
else
{
GL.Disable(EnableCap.PolygonOffsetFill);
}
if (enables == 0)
{
return;
}
if (HwCapabilities.SupportsPolygonOffsetClamp)
{
GL.PolygonOffsetClamp(factor, units, clamp);
}
else
{
GL.PolygonOffset(factor, units);
}
}
public void SetDepthClamp(bool clamp)
{
if (!clamp)
{
GL.Disable(EnableCap.DepthClamp);
return;
}
GL.Enable(EnableCap.DepthClamp);
}
public void SetDepthMode(DepthMode mode)
{
ClipDepthMode depthMode = mode.Convert();
if (_clipDepthMode != depthMode)
{
_clipDepthMode = depthMode;
GL.ClipControl(_clipOrigin, depthMode);
}
}
public void SetDepthTest(DepthTestDescriptor depthTest)
{
if (depthTest.TestEnable)
{
GL.Enable(EnableCap.DepthTest);
GL.DepthFunc((DepthFunction)depthTest.Func.Convert());
}
else
{
GL.Disable(EnableCap.DepthTest);
}
GL.DepthMask(depthTest.WriteEnable);
_depthMask = depthTest.WriteEnable;
_depthTestEnable = depthTest.TestEnable;
}
public void SetFaceCulling(bool enable, Face face)
{
_cullEnable = enable;
if (!enable)
{
GL.Disable(EnableCap.CullFace);
return;
}
GL.CullFace(face.Convert());
GL.Enable(EnableCap.CullFace);
}
public void SetFrontFace(FrontFace frontFace)
{
SetFrontFace(_frontFace = frontFace.Convert());
}
public void SetImage(int binding, ITexture texture, Format imageFormat)
{
if (texture == null)
{
return;
}
TextureBase texBase = (TextureBase)texture;
SizedInternalFormat format = FormatTable.GetImageFormat(imageFormat);
if (format != 0)
{
GL.BindImageTexture(binding, texBase.Handle, 0, true, 0, TextureAccess.ReadWrite, format);
}
}
public void SetIndexBuffer(BufferRange buffer, IndexType type)
{
_elementsType = type.Convert();
_indexBaseOffset = (IntPtr)buffer.Offset;
EnsureVertexArray();
_vertexArray.SetIndexBuffer(buffer);
}
public void SetLogicOpState(bool enable, LogicalOp op)
{
if (enable)
{
GL.Enable(EnableCap.ColorLogicOp);
GL.LogicOp((LogicOp)op.Convert());
}
else
{
GL.Disable(EnableCap.ColorLogicOp);
}
}
public void SetLineParameters(float width, bool smooth)
{
if (smooth)
{
GL.Enable(EnableCap.LineSmooth);
}
else
{
GL.Disable(EnableCap.LineSmooth);
}
GL.LineWidth(width);
}
public unsafe void SetPatchParameters(int vertices, ReadOnlySpan<float> defaultOuterLevel, ReadOnlySpan<float> defaultInnerLevel)
{
GL.PatchParameter(PatchParameterInt.PatchVertices, vertices);
fixed (float* pOuterLevel = defaultOuterLevel)
{
GL.PatchParameter(PatchParameterFloat.PatchDefaultOuterLevel, pOuterLevel);
}
fixed (float* pInnerLevel = defaultInnerLevel)
{
GL.PatchParameter(PatchParameterFloat.PatchDefaultInnerLevel, pInnerLevel);
}
}
public void SetPointParameters(float size, bool isProgramPointSize, bool enablePointSprite, Origin origin)
{
// GL_POINT_SPRITE was deprecated in core profile 3.2+ and causes GL_INVALID_ENUM when set.
// As we don't know if the current context is core or compat, it's safer to keep this code.
if (enablePointSprite)
{
GL.Enable(EnableCap.PointSprite);
}
else
{
GL.Disable(EnableCap.PointSprite);
}
if (isProgramPointSize)
{
GL.Enable(EnableCap.ProgramPointSize);
}
else
{
GL.Disable(EnableCap.ProgramPointSize);
}
GL.PointParameter(origin == Origin.LowerLeft
? PointSpriteCoordOriginParameter.LowerLeft
: PointSpriteCoordOriginParameter.UpperLeft);
// Games seem to set point size to 0 which generates a GL_INVALID_VALUE
// From the spec, GL_INVALID_VALUE is generated if size is less than or equal to 0.
GL.PointSize(Math.Max(float.Epsilon, size));
}
public void SetPolygonMode(GAL.PolygonMode frontMode, GAL.PolygonMode backMode)
{
if (frontMode == backMode)
{
GL.PolygonMode(MaterialFace.FrontAndBack, frontMode.Convert());
}
else
{
GL.PolygonMode(MaterialFace.Front, frontMode.Convert());
GL.PolygonMode(MaterialFace.Back, backMode.Convert());
}
}
public void SetPrimitiveRestart(bool enable, int index)
{
if (!enable)
{
GL.Disable(EnableCap.PrimitiveRestart);
return;
}
GL.PrimitiveRestartIndex(index);
GL.Enable(EnableCap.PrimitiveRestart);
}
public void SetPrimitiveTopology(PrimitiveTopology topology)
{
_primitiveType = topology.Convert();
}
public void SetProgram(IProgram program)
{
_program = (Program)program;
if (_tfEnabled)
{
GL.EndTransformFeedback();
_program.Bind();
GL.BeginTransformFeedback(_tfTopology);
}
else
{
_program.Bind();
}
}
public void SetRasterizerDiscard(bool discard)
{
if (discard)
{
GL.Enable(EnableCap.RasterizerDiscard);
}
else
{
GL.Disable(EnableCap.RasterizerDiscard);
}
_rasterizerDiscard = discard;
}
public void SetRenderTargetScale(float scale)
{
_renderScale[0].X = scale;
_supportBuffer.UpdateRenderScale(_renderScale, 0, 1); // Just the first element.
}
public void SetRenderTargetColorMasks(ReadOnlySpan<uint> componentMasks)
{
for (int index = 0; index < componentMasks.Length; index++)
{
_componentMasks[index] = componentMasks[index];
RestoreComponentMask(index);
}
}
public void SetRenderTargets(ITexture[] colors, ITexture depthStencil)
{
EnsureFramebuffer();
bool isBgraChanged = false;
for (int index = 0; index < colors.Length; index++)
{
TextureView color = (TextureView)colors[index];
_framebuffer.AttachColor(index, color);
int isBgra = color != null && color.Format.IsBgr() ? 1 : 0;
if (_fpIsBgra[index].X != isBgra)
{
_fpIsBgra[index].X = isBgra;
isBgraChanged = true;
RestoreComponentMask(index);
}
}
if (isBgraChanged)
{
_supportBuffer.UpdateFragmentIsBgra(_fpIsBgra, 0, SupportBuffer.FragmentIsBgraCount);
}
TextureView depthStencilView = (TextureView)depthStencil;
_framebuffer.AttachDepthStencil(depthStencilView);
_framebuffer.SetDrawBuffers(colors.Length);
}
public void SetSampler(int binding, ISampler sampler)
{
if (sampler == null)
{
return;
}
Sampler samp = (Sampler)sampler;
if (binding == 0)
{
_unit0Sampler = samp;
}
samp.Bind(binding);
}
public void SetScissor(int index, bool enable, int x, int y, int width, int height)
{
uint mask = 1u << index;
if (!enable)
{
if ((_scissorEnables & mask) != 0)
{
_scissorEnables &= ~mask;
GL.Disable(IndexedEnableCap.ScissorTest, index);
}
return;
}
if ((_scissorEnables & mask) == 0)
{
_scissorEnables |= mask;
GL.Enable(IndexedEnableCap.ScissorTest, index);
}
GL.ScissorIndexed(index, x, y, width, height);
}
public void SetStencilTest(StencilTestDescriptor stencilTest)
{
_stencilTestEnable = stencilTest.TestEnable;
if (!stencilTest.TestEnable)
{
GL.Disable(EnableCap.StencilTest);
return;
}
GL.StencilOpSeparate(
StencilFace.Front,
stencilTest.FrontSFail.Convert(),
stencilTest.FrontDpFail.Convert(),
stencilTest.FrontDpPass.Convert());
GL.StencilFuncSeparate(
StencilFace.Front,
(StencilFunction)stencilTest.FrontFunc.Convert(),
stencilTest.FrontFuncRef,
stencilTest.FrontFuncMask);
GL.StencilMaskSeparate(StencilFace.Front, stencilTest.FrontMask);
GL.StencilOpSeparate(
StencilFace.Back,
stencilTest.BackSFail.Convert(),
stencilTest.BackDpFail.Convert(),
stencilTest.BackDpPass.Convert());
GL.StencilFuncSeparate(
StencilFace.Back,
(StencilFunction)stencilTest.BackFunc.Convert(),
stencilTest.BackFuncRef,
stencilTest.BackFuncMask);
GL.StencilMaskSeparate(StencilFace.Back, stencilTest.BackMask);
GL.Enable(EnableCap.StencilTest);
_stencilFrontMask = stencilTest.FrontMask;
}
public void SetStorageBuffers(int first, ReadOnlySpan<BufferRange> buffers)
{
SetBuffers(first, buffers, isStorage: true);
}
public void SetTexture(int binding, ITexture texture)
{
if (texture == null)
{
return;
}
if (binding == 0)
{
_unit0Texture = (TextureBase)texture;
}
else
{
((TextureBase)texture).Bind(binding);
}
}
public void SetTransformFeedbackBuffers(ReadOnlySpan<BufferRange> buffers)
{
if (_tfEnabled)
{
GL.EndTransformFeedback();
}
int count = Math.Min(buffers.Length, Constants.MaxTransformFeedbackBuffers);
for (int i = 0; i < count; i++)
{
BufferRange buffer = buffers[i];
_tfbTargets[i] = buffer;
if (buffer.Handle == BufferHandle.Null)
{
GL.BindBufferBase(BufferRangeTarget.TransformFeedbackBuffer, i, 0);
continue;
}
if (_tfbs[i] == BufferHandle.Null)
{
_tfbs[i] = Buffer.Create();
}
Buffer.Resize(_tfbs[i], buffer.Size);
Buffer.Copy(buffer.Handle, _tfbs[i], buffer.Offset, 0, buffer.Size);
GL.BindBufferBase(BufferRangeTarget.TransformFeedbackBuffer, i, _tfbs[i].ToInt32());
}
if (_tfEnabled)
{
GL.BeginTransformFeedback(_tfTopology);
}
}
public void SetUniformBuffers(int first, ReadOnlySpan<BufferRange> buffers)
{
SetBuffers(first, buffers, isStorage: false);
}
public void SetUserClipDistance(int index, bool enableClip)
{
if (!enableClip)
{
GL.Disable(EnableCap.ClipDistance0 + index);
return;
}
GL.Enable(EnableCap.ClipDistance0 + index);
}
public void SetVertexAttribs(ReadOnlySpan<VertexAttribDescriptor> vertexAttribs)
{
EnsureVertexArray();
_vertexArray.SetVertexAttributes(vertexAttribs);
}
public void SetVertexBuffers(ReadOnlySpan<VertexBufferDescriptor> vertexBuffers)
{
EnsureVertexArray();
_vertexArray.SetVertexBuffers(vertexBuffers);
}
public void SetViewports(int first, ReadOnlySpan<Viewport> viewports)
{
Array.Resize(ref _viewportArray, viewports.Length * 4);
Array.Resize(ref _depthRangeArray, viewports.Length * 2);
float[] viewportArray = _viewportArray;
double[] depthRangeArray = _depthRangeArray;
for (int index = 0; index < viewports.Length; index++)
{
int viewportElemIndex = index * 4;
Viewport viewport = viewports[index];
viewportArray[viewportElemIndex + 0] = viewport.Region.X;
viewportArray[viewportElemIndex + 1] = viewport.Region.Y + (viewport.Region.Height < 0 ? viewport.Region.Height : 0);
viewportArray[viewportElemIndex + 2] = viewport.Region.Width;
viewportArray[viewportElemIndex + 3] = MathF.Abs(viewport.Region.Height);
if (HwCapabilities.SupportsViewportSwizzle)
{
GL.NV.ViewportSwizzle(
index,
viewport.SwizzleX.Convert(),
viewport.SwizzleY.Convert(),
viewport.SwizzleZ.Convert(),
viewport.SwizzleW.Convert());
}
depthRangeArray[index * 2 + 0] = viewport.DepthNear;
depthRangeArray[index * 2 + 1] = viewport.DepthFar;
}
bool flipY = viewports.Length != 0 && viewports[0].Region.Height < 0;
SetOrigin(flipY ? ClipOrigin.UpperLeft : ClipOrigin.LowerLeft);
GL.ViewportArray(first, viewports.Length, viewportArray);
GL.DepthRangeArray(first, viewports.Length, depthRangeArray);
}
public void TextureBarrier()
{
GL.MemoryBarrier(MemoryBarrierFlags.TextureFetchBarrierBit);
}
public void TextureBarrierTiled()
{
GL.MemoryBarrier(MemoryBarrierFlags.TextureFetchBarrierBit);
}
private void SetBuffers(int first, ReadOnlySpan<BufferRange> buffers, bool isStorage)
{
BufferRangeTarget target = isStorage ? BufferRangeTarget.ShaderStorageBuffer : BufferRangeTarget.UniformBuffer;
for (int index = 0; index < buffers.Length; index++)
{
BufferRange buffer = buffers[index];
if (buffer.Handle == BufferHandle.Null)
{
GL.BindBufferRange(target, first + index, 0, IntPtr.Zero, 0);
continue;
}
GL.BindBufferRange(target, first + index, buffer.Handle.ToInt32(), (IntPtr)buffer.Offset, buffer.Size);
}
}
private void SetOrigin(ClipOrigin origin)
{
if (_clipOrigin != origin)
{
_clipOrigin = origin;
GL.ClipControl(origin, _clipDepthMode);
SetFrontFace(_frontFace);
}
}
private void SetFrontFace(FrontFaceDirection frontFace)
{
// Changing clip origin will also change the front face to compensate
// for the flipped viewport, we flip it again here to compensate as
// this effect is undesirable for us.
if (_clipOrigin == ClipOrigin.UpperLeft)
{
frontFace = frontFace == FrontFaceDirection.Ccw ? FrontFaceDirection.Cw : FrontFaceDirection.Ccw;
}
GL.FrontFace(frontFace);
}
private void EnsureVertexArray()
{
if (_vertexArray == null)
{
_vertexArray = new VertexArray();
_vertexArray.Bind();
}
}
private void EnsureFramebuffer()
{
if (_framebuffer == null)
{
_framebuffer = new Framebuffer();
int boundHandle = _framebuffer.Bind();
_boundDrawFramebuffer = _boundReadFramebuffer = boundHandle;
GL.Enable(EnableCap.FramebufferSrgb);
}
}
internal (int drawHandle, int readHandle) GetBoundFramebuffers()
{
if (BackgroundContextWorker.InBackground)
{
return (0, 0);
}
return (_boundDrawFramebuffer, _boundReadFramebuffer);
}
public void UpdateRenderScale(ReadOnlySpan<float> scales, int totalCount, int fragmentCount)
{
bool changed = false;
for (int index = 0; index < totalCount; index++)
{
if (_renderScale[1 + index].X != scales[index])
{
_renderScale[1 + index].X = scales[index];
changed = true;
}
}
// Only update fragment count if there are scales after it for the vertex stage.
if (fragmentCount != totalCount && fragmentCount != _fragmentScaleCount)
{
_fragmentScaleCount = fragmentCount;
_supportBuffer.UpdateFragmentRenderScaleCount(_fragmentScaleCount);
}
if (changed)
{
_supportBuffer.UpdateRenderScale(_renderScale, 0, 1 + totalCount);
}
}
private void PrepareForDispatch()
{
_unit0Texture?.Bind(0);
_supportBuffer.Commit();
}
private void PreDraw()
{
DrawCount++;
_vertexArray.Validate();
_unit0Texture?.Bind(0);
_supportBuffer.Commit();
}
private void PostDraw()
{
if (_tfEnabled)
{
for (int i = 0; i < Constants.MaxTransformFeedbackBuffers; i++)
{
if (_tfbTargets[i].Handle != BufferHandle.Null)
{
Buffer.Copy(_tfbs[i], _tfbTargets[i].Handle, 0, _tfbTargets[i].Offset, _tfbTargets[i].Size);
}
}
}
}
public void RestoreComponentMask(int index)
{
// If the bound render target is bgra, swap the red and blue masks.
uint redMask = _fpIsBgra[index].X == 0 ? 1u : 4u;
uint blueMask = _fpIsBgra[index].X == 0 ? 4u : 1u;
GL.ColorMask(
index,
(_componentMasks[index] & redMask) != 0,
(_componentMasks[index] & 2u) != 0,
(_componentMasks[index] & blueMask) != 0,
(_componentMasks[index] & 8u) != 0);
}
public void RestoreScissor0Enable()
{
if ((_scissorEnables & 1u) != 0)
{
GL.Enable(IndexedEnableCap.ScissorTest, 0);
}
}
public void RestoreRasterizerDiscard()
{
if (_rasterizerDiscard)
{
GL.Enable(EnableCap.RasterizerDiscard);
}
}
public bool TryHostConditionalRendering(ICounterEvent value, ulong compare, bool isEqual)
{
if (value is CounterQueueEvent)
{
// Compare an event and a constant value.
CounterQueueEvent evt = (CounterQueueEvent)value;
// Easy host conditional rendering when the check matches what GL can do:
// - Event is of type samples passed.
// - Result is not a combination of multiple queries.
// - Comparing against 0.
// - Event has not already been flushed.
if (compare == 0 && evt.Type == QueryTarget.SamplesPassed && evt.ClearCounter)
{
if (!value.ReserveForHostAccess())
{
// If the event has been flushed, then just use the values on the CPU.
// The query object may already be repurposed for another draw (eg. begin + end).
return false;
}
GL.BeginConditionalRender(evt.Query, isEqual ? ConditionalRenderType.QueryNoWaitInverted : ConditionalRenderType.QueryNoWait);
_activeConditionalRender = evt;
return true;
}
}
// The GPU will flush the queries to CPU and evaluate the condition there instead.
GL.Flush(); // The thread will be stalled manually flushing the counter, so flush GL commands now.
return false;
}
public bool TryHostConditionalRendering(ICounterEvent value, ICounterEvent compare, bool isEqual)
{
GL.Flush(); // The GPU thread will be stalled manually flushing the counter, so flush GL commands now.
return false; // We don't currently have a way to compare two counters for conditional rendering.
}
public void EndHostConditionalRendering()
{
GL.EndConditionalRender();
_activeConditionalRender?.ReleaseHostAccess();
_activeConditionalRender = null;
}
public void Dispose()
{
_supportBuffer?.Dispose();
for (int i = 0; i < Constants.MaxTransformFeedbackBuffers; i++)
{
if (_tfbs[i] != BufferHandle.Null)
{
Buffer.Delete(_tfbs[i]);
_tfbs[i] = BufferHandle.Null;
}
}
_activeConditionalRender?.ReleaseHostAccess();
_framebuffer?.Dispose();
_vertexArray?.Dispose();
_drawTexture.Dispose();
}
}
}