RyuKen/Ryujinx.Audio/Renderer/Dsp/Command/DelayCommand.cs
Mary f556c80d02
Haydn: Part 1 (#2007)
* Haydn: Part 1

Based on my reverse of audio 11.0.0.

As always, core implementation under LGPLv3 for the same reasons as for Amadeus.

This place the bases of a more flexible audio system while making audout & audin accurate.

This have the following improvements:
- Complete reimplementation of audout and audin.
- Audin currently only have a dummy backend.
- Dramatically reduce CPU usage by up to 50% in common cases (SoundIO and OpenAL).
- Audio Renderer now can output to 5.1 devices when supported.
- Audio Renderer init its backend on demand instead of keeping two up all the time.
- All backends implementation are now in their own project.
- Ryujinx.Audio.Renderer was renamed Ryujinx.Audio and was refactored because of this.

As a note, games having issues with OpenAL haven't improved and will not
because of OpenAL design (stopping when buffers finish playing causing
possible audio "pops" when buffers are very small).

* Update for latest hexkyz's edits on Switchbrew

* audren: Rollback channel configuration changes

* Address gdkchan's comments

* Fix typo in OpenAL backend driver

* Address last comments

* Fix a nit

* Address gdkchan's comments
2021-02-26 01:11:56 +01:00

272 lines
12 KiB
C#

//
// Copyright (c) 2019-2021 Ryujinx
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
//
using Ryujinx.Audio.Renderer.Dsp.State;
using Ryujinx.Audio.Renderer.Parameter.Effect;
using Ryujinx.Audio.Renderer.Server.Effect;
using System;
using System.Diagnostics;
namespace Ryujinx.Audio.Renderer.Dsp.Command
{
public class DelayCommand : ICommand
{
public bool Enabled { get; set; }
public int NodeId { get; }
public CommandType CommandType => CommandType.Delay;
public ulong EstimatedProcessingTime { get; set; }
public DelayParameter Parameter => _parameter;
public Memory<DelayState> State { get; }
public ulong WorkBuffer { get; }
public ushort[] OutputBufferIndices { get; }
public ushort[] InputBufferIndices { get; }
public bool IsEffectEnabled { get; }
private DelayParameter _parameter;
private const int FixedPointPrecision = 14;
public DelayCommand(uint bufferOffset, DelayParameter parameter, Memory<DelayState> state, bool isEnabled, ulong workBuffer, int nodeId)
{
Enabled = true;
NodeId = nodeId;
_parameter = parameter;
State = state;
WorkBuffer = workBuffer;
IsEffectEnabled = isEnabled;
InputBufferIndices = new ushort[Constants.VoiceChannelCountMax];
OutputBufferIndices = new ushort[Constants.VoiceChannelCountMax];
for (int i = 0; i < Parameter.ChannelCount; i++)
{
InputBufferIndices[i] = (ushort)(bufferOffset + Parameter.Input[i]);
OutputBufferIndices[i] = (ushort)(bufferOffset + Parameter.Output[i]);
}
}
private void ProcessDelayMono(Span<float> outputBuffer, ReadOnlySpan<float> inputBuffer, uint sampleCount)
{
ref DelayState state = ref State.Span[0];
float feedbackGain = FixedPointHelper.ToFloat(Parameter.FeedbackGain, FixedPointPrecision);
float inGain = FixedPointHelper.ToFloat(Parameter.InGain, FixedPointPrecision);
float dryGain = FixedPointHelper.ToFloat(Parameter.DryGain, FixedPointPrecision);
float outGain = FixedPointHelper.ToFloat(Parameter.OutGain, FixedPointPrecision);
for (int i = 0; i < sampleCount; i++)
{
float input = inputBuffer[i] * 64;
float delayLineValue = state.DelayLines[0].Read();
float lowPassResult = input * inGain + delayLineValue * feedbackGain * state.LowPassBaseGain + state.LowPassZ[0] * state.LowPassFeedbackGain;
state.LowPassZ[0] = lowPassResult;
state.DelayLines[0].Update(lowPassResult);
outputBuffer[i] = (input * dryGain + delayLineValue * outGain) / 64;
}
}
private void ProcessDelayStereo(Memory<float>[] outputBuffers, ReadOnlyMemory<float>[] inputBuffers, uint sampleCount)
{
ref DelayState state = ref State.Span[0];
float[] channelInput = new float[Parameter.ChannelCount];
float[] delayLineValues = new float[Parameter.ChannelCount];
float[] temp = new float[Parameter.ChannelCount];
float delayFeedbackBaseGain = state.DelayFeedbackBaseGain;
float delayFeedbackCrossGain = state.DelayFeedbackCrossGain;
float inGain = FixedPointHelper.ToFloat(Parameter.InGain, FixedPointPrecision);
float dryGain = FixedPointHelper.ToFloat(Parameter.DryGain, FixedPointPrecision);
float outGain = FixedPointHelper.ToFloat(Parameter.OutGain, FixedPointPrecision);
for (int i = 0; i < sampleCount; i++)
{
for (int j = 0; j < Parameter.ChannelCount; j++)
{
channelInput[j] = inputBuffers[j].Span[i] * 64;
delayLineValues[j] = state.DelayLines[j].Read();
}
temp[0] = channelInput[0] * inGain + delayLineValues[1] * delayFeedbackCrossGain + delayLineValues[0] * delayFeedbackBaseGain;
temp[1] = channelInput[1] * inGain + delayLineValues[0] * delayFeedbackCrossGain + delayLineValues[1] * delayFeedbackBaseGain;
for (int j = 0; j < Parameter.ChannelCount; j++)
{
float lowPassResult = state.LowPassFeedbackGain * state.LowPassZ[j] + temp[j] * state.LowPassBaseGain;
state.LowPassZ[j] = lowPassResult;
state.DelayLines[j].Update(lowPassResult);
outputBuffers[j].Span[i] = (channelInput[j] * dryGain + delayLineValues[j] * outGain) / 64;
}
}
}
private void ProcessDelayQuadraphonic(Memory<float>[] outputBuffers, ReadOnlyMemory<float>[] inputBuffers, uint sampleCount)
{
ref DelayState state = ref State.Span[0];
float[] channelInput = new float[Parameter.ChannelCount];
float[] delayLineValues = new float[Parameter.ChannelCount];
float[] temp = new float[Parameter.ChannelCount];
float delayFeedbackBaseGain = state.DelayFeedbackBaseGain;
float delayFeedbackCrossGain = state.DelayFeedbackCrossGain;
float inGain = FixedPointHelper.ToFloat(Parameter.InGain, FixedPointPrecision);
float dryGain = FixedPointHelper.ToFloat(Parameter.DryGain, FixedPointPrecision);
float outGain = FixedPointHelper.ToFloat(Parameter.OutGain, FixedPointPrecision);
for (int i = 0; i < sampleCount; i++)
{
for (int j = 0; j < Parameter.ChannelCount; j++)
{
channelInput[j] = inputBuffers[j].Span[i] * 64;
delayLineValues[j] = state.DelayLines[j].Read();
}
temp[0] = channelInput[0] * inGain + (delayLineValues[2] + delayLineValues[1]) * delayFeedbackCrossGain + delayLineValues[0] * delayFeedbackBaseGain;
temp[1] = channelInput[1] * inGain + (delayLineValues[0] + delayLineValues[3]) * delayFeedbackCrossGain + delayLineValues[1] * delayFeedbackBaseGain;
temp[2] = channelInput[2] * inGain + (delayLineValues[3] + delayLineValues[0]) * delayFeedbackCrossGain + delayLineValues[2] * delayFeedbackBaseGain;
temp[3] = channelInput[3] * inGain + (delayLineValues[1] + delayLineValues[2]) * delayFeedbackCrossGain + delayLineValues[3] * delayFeedbackBaseGain;
for (int j = 0; j < Parameter.ChannelCount; j++)
{
float lowPassResult = state.LowPassFeedbackGain * state.LowPassZ[j] + temp[j] * state.LowPassBaseGain;
state.LowPassZ[j] = lowPassResult;
state.DelayLines[j].Update(lowPassResult);
outputBuffers[j].Span[i] = (channelInput[j] * dryGain + delayLineValues[j] * outGain) / 64;
}
}
}
private void ProcessDelaySurround(Memory<float>[] outputBuffers, ReadOnlyMemory<float>[] inputBuffers, uint sampleCount)
{
ref DelayState state = ref State.Span[0];
float[] channelInput = new float[Parameter.ChannelCount];
float[] delayLineValues = new float[Parameter.ChannelCount];
float[] temp = new float[Parameter.ChannelCount];
float delayFeedbackBaseGain = state.DelayFeedbackBaseGain;
float delayFeedbackCrossGain = state.DelayFeedbackCrossGain;
float inGain = FixedPointHelper.ToFloat(Parameter.InGain, FixedPointPrecision);
float dryGain = FixedPointHelper.ToFloat(Parameter.DryGain, FixedPointPrecision);
float outGain = FixedPointHelper.ToFloat(Parameter.OutGain, FixedPointPrecision);
for (int i = 0; i < sampleCount; i++)
{
for (int j = 0; j < Parameter.ChannelCount; j++)
{
channelInput[j] = inputBuffers[j].Span[i] * 64;
delayLineValues[j] = state.DelayLines[j].Read();
}
temp[0] = channelInput[0] * inGain + (delayLineValues[2] + delayLineValues[4]) * delayFeedbackCrossGain + delayLineValues[0] * delayFeedbackBaseGain;
temp[1] = channelInput[1] * inGain + (delayLineValues[4] + delayLineValues[3]) * delayFeedbackCrossGain + delayLineValues[1] * delayFeedbackBaseGain;
temp[2] = channelInput[2] * inGain + (delayLineValues[3] + delayLineValues[0]) * delayFeedbackCrossGain + delayLineValues[2] * delayFeedbackBaseGain;
temp[3] = channelInput[3] * inGain + (delayLineValues[1] + delayLineValues[2]) * delayFeedbackCrossGain + delayLineValues[3] * delayFeedbackBaseGain;
temp[4] = channelInput[4] * inGain + (delayLineValues[0] + delayLineValues[1]) * delayFeedbackCrossGain + delayLineValues[4] * delayFeedbackBaseGain;
temp[5] = channelInput[5] * inGain + delayLineValues[5] * delayFeedbackBaseGain;
for (int j = 0; j < Parameter.ChannelCount; j++)
{
float lowPassResult = state.LowPassFeedbackGain * state.LowPassZ[j] + temp[j] * state.LowPassBaseGain;
state.LowPassZ[j] = lowPassResult;
state.DelayLines[j].Update(lowPassResult);
outputBuffers[j].Span[i] = (channelInput[j] * dryGain + delayLineValues[j] * outGain) / 64;
}
}
}
private void ProcessDelay(CommandList context)
{
Debug.Assert(Parameter.IsChannelCountValid());
if (IsEffectEnabled && Parameter.IsChannelCountValid())
{
ReadOnlyMemory<float>[] inputBuffers = new ReadOnlyMemory<float>[Parameter.ChannelCount];
Memory<float>[] outputBuffers = new Memory<float>[Parameter.ChannelCount];
for (int i = 0; i < Parameter.ChannelCount; i++)
{
inputBuffers[i] = context.GetBufferMemory(InputBufferIndices[i]);
outputBuffers[i] = context.GetBufferMemory(OutputBufferIndices[i]);
}
switch (Parameter.ChannelCount)
{
case 1:
ProcessDelayMono(outputBuffers[0].Span, inputBuffers[0].Span, context.SampleCount);
break;
case 2:
ProcessDelayStereo(outputBuffers, inputBuffers, context.SampleCount);
break;
case 4:
ProcessDelayQuadraphonic(outputBuffers, inputBuffers, context.SampleCount);
break;
case 6:
ProcessDelaySurround(outputBuffers, inputBuffers, context.SampleCount);
break;
default:
throw new NotImplementedException($"{Parameter.ChannelCount}");
}
}
else
{
for (int i = 0; i < Parameter.ChannelCount; i++)
{
if (InputBufferIndices[i] != OutputBufferIndices[i])
{
context.GetBufferMemory(InputBufferIndices[i]).CopyTo(context.GetBufferMemory(OutputBufferIndices[i]));
}
}
}
}
public void Process(CommandList context)
{
ref DelayState state = ref State.Span[0];
if (IsEffectEnabled)
{
if (Parameter.Status == UsageState.Invalid)
{
state = new DelayState(ref _parameter, WorkBuffer);
}
else if (Parameter.Status == UsageState.New)
{
state.UpdateParameter(ref _parameter);
}
}
ProcessDelay(context);
}
}
}