mirror of
https://github.com/jugeeya/UltimateTrainingModpack.git
synced 2025-01-04 06:30:31 +00:00
144 lines
5.4 KiB
Rust
144 lines
5.4 KiB
Rust
|
use datafusion::prelude::*;
|
||
|
use datafusion::arrow::record_batch::RecordBatch;
|
||
|
use datafusion::datasource::json::NdJsonFile;
|
||
|
use datafusion::physical_plan::json::NdJsonReadOptions;
|
||
|
use datafusion::arrow::datatypes::{Schema, Field, DataType};
|
||
|
|
||
|
use std::sync::Arc;
|
||
|
|
||
|
// export.json is relative to /event/
|
||
|
// cat export.json | jq -c '.SMASH_OPEN.device[][][]' > smash_open.json
|
||
|
#[derive(Debug)]
|
||
|
struct Event {
|
||
|
device_id: String,
|
||
|
event_name: String,
|
||
|
event_time: i64,
|
||
|
menu_settings: String,
|
||
|
mod_version: String,
|
||
|
session_id: String,
|
||
|
smash_version: String,
|
||
|
user_id: String
|
||
|
}
|
||
|
|
||
|
use chrono::{DateTime, NaiveDateTime, Utc};
|
||
|
fn timestamp_secs_to_datetime(ts: i64) -> DateTime<Utc> {
|
||
|
DateTime::<Utc>::from_utc(NaiveDateTime::from_timestamp(ts, 0), Utc)
|
||
|
}
|
||
|
|
||
|
use plotters::prelude::*;
|
||
|
const OUT_FILE_NAME: &'static str = "boxplot.svg";
|
||
|
fn draw_chart(results: Vec<RecordBatch>) -> Result<(), Box<dyn std::error::Error>> {
|
||
|
let num_devices_idx = results[0].schema().column_with_name("num_devices").unwrap().0;
|
||
|
let num_sessions_idx = results[0].schema().column_with_name("num_sessions").unwrap().0;
|
||
|
let timestamps_idx = results[0].schema().column_with_name("date").unwrap().0;
|
||
|
|
||
|
let num_devices = results[0].column(num_devices_idx).as_any()
|
||
|
.downcast_ref::<datafusion::arrow::array::UInt64Array>()
|
||
|
.expect("Failed to downcast").values();
|
||
|
let num_sessions = results[0].column(num_sessions_idx).as_any()
|
||
|
.downcast_ref::<datafusion::arrow::array::UInt64Array>()
|
||
|
.expect("Failed to downcast").values();
|
||
|
let timestamp_millis = results[0].column(timestamps_idx).as_any()
|
||
|
.downcast_ref::<datafusion::arrow::array::TimestampMillisecondArray>()
|
||
|
.expect("Failed to downcast").values();
|
||
|
|
||
|
let device_data_points = num_devices.iter()
|
||
|
.enumerate().map(|(i, x)| (timestamp_secs_to_datetime(timestamp_millis[i] / 1000), *x));
|
||
|
let session_data_points = num_sessions.iter()
|
||
|
.enumerate().map(|(i, x)| (timestamp_secs_to_datetime(timestamp_millis[i] / 1000), *x));
|
||
|
|
||
|
let root = SVGBackend::new(OUT_FILE_NAME, (1024, 768)).into_drawing_area();
|
||
|
root.fill(&WHITE)?;
|
||
|
let mut chart = ChartBuilder::on(&root)
|
||
|
.caption("Users and Sessions by Date", ("sans-serif", 50).into_font())
|
||
|
.margin(5)
|
||
|
.x_label_area_size(30)
|
||
|
.y_label_area_size(30)
|
||
|
.build_cartesian_2d(
|
||
|
(timestamp_secs_to_datetime(timestamp_millis[0] / 1000))..(timestamp_secs_to_datetime(*timestamp_millis.last().unwrap() / 1000)),
|
||
|
0..*num_sessions.iter().max().unwrap())?;
|
||
|
|
||
|
chart.configure_mesh().draw()?;
|
||
|
|
||
|
chart
|
||
|
.draw_series(LineSeries::new(
|
||
|
device_data_points,
|
||
|
&RED,
|
||
|
))?
|
||
|
.label("Unique Devices")
|
||
|
.legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], &RED));
|
||
|
chart
|
||
|
.draw_series(LineSeries::new(
|
||
|
session_data_points,
|
||
|
&BLUE,
|
||
|
))?
|
||
|
.label("Unique Sessions")
|
||
|
.legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], &BLUE));
|
||
|
|
||
|
chart
|
||
|
.configure_series_labels()
|
||
|
.background_style(&WHITE.mix(0.8))
|
||
|
.border_style(&BLACK)
|
||
|
.draw()?;
|
||
|
|
||
|
Ok(())
|
||
|
}
|
||
|
|
||
|
#[tokio::main]
|
||
|
async fn main() -> datafusion::error::Result<()> {
|
||
|
// let smash_open_table = NdJsonFile::try_new(
|
||
|
// "smash_open.json",
|
||
|
// NdJsonReadOptions{
|
||
|
// schema: None,
|
||
|
// schema_infer_max_records: 1,
|
||
|
// file_extension: ".json",
|
||
|
// }
|
||
|
// ).unwrap();
|
||
|
|
||
|
let menu_open_table = NdJsonFile::try_new(
|
||
|
"menu_open.json",
|
||
|
NdJsonReadOptions{
|
||
|
schema: Some(Arc::new(Schema::new(vec![
|
||
|
Field::new("device_id", DataType::Utf8, false),
|
||
|
Field::new("event_name", DataType::Utf8, false),
|
||
|
Field::new("event_time", DataType::Int64, false),
|
||
|
Field::new("menu_settings", DataType::Utf8, false),
|
||
|
Field::new("session_id", DataType::Utf8, false),
|
||
|
Field::new("smash_version", DataType::Utf8, false),
|
||
|
Field::new("mod_version", DataType::Utf8, false),
|
||
|
Field::new("user_id", DataType::Utf8, false),
|
||
|
]))),
|
||
|
schema_infer_max_records: 0,
|
||
|
file_extension: ".json",
|
||
|
}
|
||
|
).unwrap();
|
||
|
|
||
|
// // declare a new context. In spark API, this corresponds to a new spark SQLsession
|
||
|
let mut ctx = ExecutionContext::new();
|
||
|
|
||
|
// ctx.register_table("smash_open", Arc::new(smash_open_table))?;
|
||
|
ctx.register_table("menu_open", Arc::new(menu_open_table))?;
|
||
|
|
||
|
// create a plan to run a SQL query
|
||
|
let df = ctx.sql(
|
||
|
"SELECT
|
||
|
COUNT(DISTINCT device_id) num_devices,
|
||
|
COUNT(DISTINCT session_id) num_sessions,
|
||
|
COUNT(*) num_events,
|
||
|
TO_TIMESTAMP_MILLIS(DATE_TRUNC('day', CAST(event_time * 1000000 AS timestamp))) AS date FROM menu_open
|
||
|
WHERE
|
||
|
-- after 09/01/2021
|
||
|
event_time > 1630454400000
|
||
|
-- before today
|
||
|
AND CAST(event_time * 1000000 AS timestamp) < NOW()
|
||
|
GROUP BY date ORDER BY date"
|
||
|
)?;
|
||
|
|
||
|
let results: Vec<RecordBatch> = df.collect().await?;
|
||
|
// use datafusion::arrow::util::pretty::pretty_format_batches;
|
||
|
// println!("{}", pretty_format_batches(&results)?);
|
||
|
|
||
|
draw_chart(results).unwrap();
|
||
|
|
||
|
Ok(())
|
||
|
}
|