citra/src/video_core/shader/shader.h

384 lines
12 KiB
C
Raw Normal View History

// Copyright 2015 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <cstddef>
#include <memory>
#include <type_traits>
#include <vector>
#include <boost/container/static_vector.hpp>
#include <nihstro/shader_bytecode.h>
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/vector_math.h"
#include "video_core/pica.h"
#include "video_core/pica_types.h"
using nihstro::RegisterType;
using nihstro::SourceRegister;
using nihstro::DestRegister;
namespace Pica {
namespace Shader {
struct InputVertex {
alignas(16) Math::Vec4<float24> attr[16];
};
struct OutputVertex {
OutputVertex() = default;
// VS output attributes
Math::Vec4<float24> pos;
2015-08-16 13:12:43 +00:00
Math::Vec4<float24> quat;
Math::Vec4<float24> color;
Math::Vec2<float24> tc0;
Math::Vec2<float24> tc1;
2016-04-18 08:51:13 +00:00
float24 tc0_w;
INSERT_PADDING_WORDS(1);
Math::Vec3<float24> view;
INSERT_PADDING_WORDS(1);
Math::Vec2<float24> tc2;
// Padding for optimal alignment
INSERT_PADDING_WORDS(4);
// Attributes used to store intermediate results
// position after perspective divide
Math::Vec3<float24> screenpos;
INSERT_PADDING_WORDS(1);
// Linear interpolation
// factor: 0=this, 1=vtx
void Lerp(float24 factor, const OutputVertex& vtx) {
pos = pos * factor + vtx.pos * (float24::FromFloat32(1) - factor);
// TODO: Should perform perspective correct interpolation here...
tc0 = tc0 * factor + vtx.tc0 * (float24::FromFloat32(1) - factor);
tc1 = tc1 * factor + vtx.tc1 * (float24::FromFloat32(1) - factor);
tc2 = tc2 * factor + vtx.tc2 * (float24::FromFloat32(1) - factor);
screenpos = screenpos * factor + vtx.screenpos * (float24::FromFloat32(1) - factor);
color = color * factor + vtx.color * (float24::FromFloat32(1) - factor);
}
// Linear interpolation
// factor: 0=v0, 1=v1
static OutputVertex Lerp(float24 factor, const OutputVertex& v0, const OutputVertex& v1) {
OutputVertex ret = v0;
ret.Lerp(factor, v1);
return ret;
}
};
static_assert(std::is_pod<OutputVertex>::value, "Structure is not POD");
static_assert(sizeof(OutputVertex) == 32 * sizeof(float), "OutputVertex has invalid size");
struct OutputRegisters {
OutputRegisters() = default;
alignas(16) Math::Vec4<float24> value[16];
OutputVertex ToVertex(const Regs::ShaderConfig& config);
};
static_assert(std::is_pod<OutputRegisters>::value, "Structure is not POD");
// Helper structure used to keep track of data useful for inspection of shader emulation
template <bool full_debugging>
struct DebugData;
template <>
struct DebugData<false> {
// TODO: Hide these behind and interface and move them to DebugData<true>
u32 max_offset; // maximum program counter ever reached
u32 max_opdesc_id; // maximum swizzle pattern index ever used
};
template <>
struct DebugData<true> {
// Records store the input and output operands of a particular instruction.
struct Record {
enum Type {
// Floating point arithmetic operands
SRC1 = 0x1,
SRC2 = 0x2,
SRC3 = 0x4,
// Initial and final output operand value
DEST_IN = 0x8,
DEST_OUT = 0x10,
// Current and next instruction offset (in words)
CUR_INSTR = 0x20,
NEXT_INSTR = 0x40,
// Output address register value
ADDR_REG_OUT = 0x80,
// Result of a comparison instruction
CMP_RESULT = 0x100,
// Input values for conditional flow control instructions
COND_BOOL_IN = 0x200,
COND_CMP_IN = 0x400,
// Input values for a loop
LOOP_INT_IN = 0x800,
};
Math::Vec4<float24> src1;
Math::Vec4<float24> src2;
Math::Vec4<float24> src3;
Math::Vec4<float24> dest_in;
Math::Vec4<float24> dest_out;
s32 address_registers[2];
bool conditional_code[2];
bool cond_bool;
bool cond_cmp[2];
Math::Vec4<u8> loop_int;
u32 instruction_offset;
u32 next_instruction;
// set of enabled fields (as a combination of Type flags)
unsigned mask = 0;
};
u32 max_offset; // maximum program counter ever reached
u32 max_opdesc_id; // maximum swizzle pattern index ever used
// List of records for each executed shader instruction
std::vector<DebugData<true>::Record> records;
};
// Type alias for better readability
using DebugDataRecord = DebugData<true>::Record;
// Helper function to set a DebugData<true>::Record field based on the template enum parameter.
template <DebugDataRecord::Type type, typename ValueType>
inline void SetField(DebugDataRecord& record, ValueType value);
template <>
inline void SetField<DebugDataRecord::SRC1>(DebugDataRecord& record, float24* value) {
record.src1.x = value[0];
record.src1.y = value[1];
record.src1.z = value[2];
record.src1.w = value[3];
}
template <>
inline void SetField<DebugDataRecord::SRC2>(DebugDataRecord& record, float24* value) {
record.src2.x = value[0];
record.src2.y = value[1];
record.src2.z = value[2];
record.src2.w = value[3];
}
template <>
inline void SetField<DebugDataRecord::SRC3>(DebugDataRecord& record, float24* value) {
record.src3.x = value[0];
record.src3.y = value[1];
record.src3.z = value[2];
record.src3.w = value[3];
}
template <>
inline void SetField<DebugDataRecord::DEST_IN>(DebugDataRecord& record, float24* value) {
record.dest_in.x = value[0];
record.dest_in.y = value[1];
record.dest_in.z = value[2];
record.dest_in.w = value[3];
}
template <>
inline void SetField<DebugDataRecord::DEST_OUT>(DebugDataRecord& record, float24* value) {
record.dest_out.x = value[0];
record.dest_out.y = value[1];
record.dest_out.z = value[2];
record.dest_out.w = value[3];
}
template <>
inline void SetField<DebugDataRecord::ADDR_REG_OUT>(DebugDataRecord& record, s32* value) {
record.address_registers[0] = value[0];
record.address_registers[1] = value[1];
}
template <>
inline void SetField<DebugDataRecord::CMP_RESULT>(DebugDataRecord& record, bool* value) {
record.conditional_code[0] = value[0];
record.conditional_code[1] = value[1];
}
template <>
inline void SetField<DebugDataRecord::COND_BOOL_IN>(DebugDataRecord& record, bool value) {
record.cond_bool = value;
}
template <>
inline void SetField<DebugDataRecord::COND_CMP_IN>(DebugDataRecord& record, bool* value) {
record.cond_cmp[0] = value[0];
record.cond_cmp[1] = value[1];
}
template <>
inline void SetField<DebugDataRecord::LOOP_INT_IN>(DebugDataRecord& record, Math::Vec4<u8> value) {
record.loop_int = value;
}
template <>
inline void SetField<DebugDataRecord::CUR_INSTR>(DebugDataRecord& record, u32 value) {
record.instruction_offset = value;
}
template <>
inline void SetField<DebugDataRecord::NEXT_INSTR>(DebugDataRecord& record, u32 value) {
record.next_instruction = value;
}
// Helper function to set debug information on the current shader iteration.
template <DebugDataRecord::Type type, typename ValueType>
inline void Record(DebugData<false>& debug_data, u32 offset, ValueType value) {
// Debugging disabled => nothing to do
}
template <DebugDataRecord::Type type, typename ValueType>
inline void Record(DebugData<true>& debug_data, u32 offset, ValueType value) {
if (offset >= debug_data.records.size())
debug_data.records.resize(offset + 1);
SetField<type, ValueType>(debug_data.records[offset], value);
debug_data.records[offset].mask |= type;
}
/**
* This structure contains the state information that needs to be unique for a shader unit. The 3DS
* has four shader units that process shaders in parallel. At the present, Citra only implements a
* single shader unit that processes all shaders serially. Putting the state information in a struct
* here will make it easier for us to parallelize the shader processing later.
*/
template <bool Debug>
struct UnitState {
struct Registers {
// The registers are accessed by the shader JIT using SSE instructions, and are therefore
// required to be 16-byte aligned.
alignas(16) Math::Vec4<float24> input[16];
alignas(16) Math::Vec4<float24> temporary[16];
} registers;
static_assert(std::is_pod<Registers>::value, "Structure is not POD");
OutputRegisters output_registers;
bool conditional_code[2];
// Two Address registers and one loop counter
// TODO: How many bits do these actually have?
s32 address_registers[3];
DebugData<Debug> debug;
static size_t InputOffset(const SourceRegister& reg) {
switch (reg.GetRegisterType()) {
case RegisterType::Input:
return offsetof(UnitState, registers.input) +
reg.GetIndex() * sizeof(Math::Vec4<float24>);
case RegisterType::Temporary:
return offsetof(UnitState, registers.temporary) +
reg.GetIndex() * sizeof(Math::Vec4<float24>);
default:
UNREACHABLE();
return 0;
}
}
static size_t OutputOffset(const DestRegister& reg) {
switch (reg.GetRegisterType()) {
case RegisterType::Output:
return offsetof(UnitState, output_registers.value) +
reg.GetIndex() * sizeof(Math::Vec4<float24>);
case RegisterType::Temporary:
return offsetof(UnitState, registers.temporary) +
reg.GetIndex() * sizeof(Math::Vec4<float24>);
default:
UNREACHABLE();
return 0;
}
}
};
2016-03-30 00:45:18 +00:00
/// Clears the shader cache
void ClearCache();
struct ShaderSetup {
2016-03-30 00:45:18 +00:00
struct {
// The float uniforms are accessed by the shader JIT using SSE instructions, and are
// therefore required to be 16-byte aligned.
alignas(16) Math::Vec4<float24> f[96];
2016-03-30 00:45:18 +00:00
std::array<bool, 16> b;
std::array<Math::Vec4<u8>, 4> i;
} uniforms;
2016-05-13 06:46:14 +00:00
static size_t UniformOffset(RegisterType type, unsigned index) {
switch (type) {
case RegisterType::FloatUniform:
return offsetof(ShaderSetup, uniforms.f) + index * sizeof(Math::Vec4<float24>);
2016-05-13 06:46:14 +00:00
case RegisterType::BoolUniform:
return offsetof(ShaderSetup, uniforms.b) + index * sizeof(bool);
2016-05-13 06:46:14 +00:00
case RegisterType::IntUniform:
return offsetof(ShaderSetup, uniforms.i) + index * sizeof(Math::Vec4<u8>);
2016-05-13 06:46:14 +00:00
default:
UNREACHABLE();
return 0;
}
}
2016-03-30 00:45:18 +00:00
std::array<u32, 1024> program_code;
std::array<u32, 1024> swizzle_data;
/**
* Performs any shader unit setup that only needs to happen once per shader (as opposed to once
* per vertex, which would happen within the `Run` function).
2016-03-30 00:45:18 +00:00
*/
void Setup();
/**
* Runs the currently setup shader
* @param state Shader unit state, must be setup per shader and per shader unit
* @param input Input vertex into the shader
* @param num_attributes The number of vertex shader attributes
*/
void Run(UnitState<false>& state, const InputVertex& input, int num_attributes);
2016-03-30 00:45:18 +00:00
/**
* Produce debug information based on the given shader and input vertex
* @param input Input vertex into the shader
* @param num_attributes The number of vertex shader attributes
* @param config Configuration object for the shader pipeline
* @param setup Setup object for the shader pipeline
* @return Debug information for this shader with regards to the given vertex
*/
DebugData<true> ProduceDebugInfo(const InputVertex& input, int num_attributes,
const Regs::ShaderConfig& config, const ShaderSetup& setup);
2016-03-30 00:45:18 +00:00
};
} // namespace Shader
} // namespace Pica