citra/src/core/core_timing.h
James Rowe 276d56ca9b Add CPU Clock Frequency slider
This slider affects the number of cycles that the guest cpu emulation
reports that have passed since the last time slice. This option scales
the result returned by a percentage that the user selects. In some games
underclocking the CPU can give a major speedup. Exposing this as an
option will give users something to toy with for performance, while also
potentially enhancing games that experience lag on the real console
2020-02-21 16:03:07 -07:00

251 lines
8.1 KiB
C++

// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma once
/**
* This is a system to schedule events into the emulated machine's future. Time is measured
* in main CPU clock cycles.
*
* To schedule an event, you first have to register its type. This is where you pass in the
* callback. You then schedule events using the type id you get back.
*
* The int cyclesLate that the callbacks get is how many cycles late it was.
* So to schedule a new event on a regular basis:
* inside callback:
* ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever")
*/
#include <chrono>
#include <functional>
#include <limits>
#include <string>
#include <unordered_map>
#include <vector>
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/threadsafe_queue.h"
// The timing we get from the assembly is 268,111,855.956 Hz
// It is possible that this number isn't just an integer because the compiler could have
// optimized the multiplication by a multiply-by-constant division.
// Rounding to the nearest integer should be fine
constexpr u64 BASE_CLOCK_RATE_ARM11 = 268111856;
constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / BASE_CLOCK_RATE_ARM11;
inline s64 msToCycles(int ms) {
// since ms is int there is no way to overflow
return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ms) / 1000;
}
inline s64 msToCycles(float ms) {
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.001f) * ms);
}
inline s64 msToCycles(double ms) {
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.001) * ms);
}
inline s64 usToCycles(float us) {
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.000001f) * us);
}
inline s64 usToCycles(int us) {
return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us) / 1000000);
}
inline s64 usToCycles(s64 us) {
if (us / 1000000 > static_cast<s64>(MAX_VALUE_TO_MULTIPLY)) {
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (us > static_cast<s64>(MAX_VALUE_TO_MULTIPLY)) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return BASE_CLOCK_RATE_ARM11 * (us / 1000000);
}
return (BASE_CLOCK_RATE_ARM11 * us) / 1000000;
}
inline s64 usToCycles(u64 us) {
if (us / 1000000 > MAX_VALUE_TO_MULTIPLY) {
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (us > MAX_VALUE_TO_MULTIPLY) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us / 1000000);
}
return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us)) / 1000000;
}
inline s64 nsToCycles(float ns) {
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.000000001f) * ns);
}
inline s64 nsToCycles(int ns) {
return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ns) / 1000000000;
}
inline s64 nsToCycles(s64 ns) {
if (ns / 1000000000 > static_cast<s64>(MAX_VALUE_TO_MULTIPLY)) {
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (ns > static_cast<s64>(MAX_VALUE_TO_MULTIPLY)) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return BASE_CLOCK_RATE_ARM11 * (ns / 1000000000);
}
return (BASE_CLOCK_RATE_ARM11 * ns) / 1000000000;
}
inline s64 nsToCycles(u64 ns) {
if (ns / 1000000000 > MAX_VALUE_TO_MULTIPLY) {
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
return std::numeric_limits<s64>::max();
}
if (ns > MAX_VALUE_TO_MULTIPLY) {
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
return BASE_CLOCK_RATE_ARM11 * (static_cast<s64>(ns) / 1000000000);
}
return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ns)) / 1000000000;
}
inline u64 cyclesToNs(s64 cycles) {
return cycles * 1000000000 / BASE_CLOCK_RATE_ARM11;
}
inline s64 cyclesToUs(s64 cycles) {
return cycles * 1000000 / BASE_CLOCK_RATE_ARM11;
}
inline u64 cyclesToMs(s64 cycles) {
return cycles * 1000 / BASE_CLOCK_RATE_ARM11;
}
namespace Core {
using TimedCallback = std::function<void(u64 userdata, int cycles_late)>;
struct TimingEventType {
TimedCallback callback;
const std::string* name;
};
class Timing {
public:
struct Event {
s64 time;
u64 fifo_order;
u64 userdata;
const TimingEventType* type;
bool operator>(const Event& right) const;
bool operator<(const Event& right) const;
};
static constexpr int MAX_SLICE_LENGTH = 20000;
class Timer {
public:
Timer(double cpu_clock_scale);
~Timer();
s64 GetMaxSliceLength() const;
void Advance(s64 max_slice_length = MAX_SLICE_LENGTH);
void Idle();
u64 GetTicks() const;
u64 GetIdleTicks() const;
void AddTicks(u64 ticks);
s64 GetDowncount() const;
void ForceExceptionCheck(s64 cycles);
void MoveEvents();
private:
friend class Timing;
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't
// accomodated by the standard adaptor class.
std::vector<Event> event_queue;
u64 event_fifo_id = 0;
// the queue for storing the events from other threads threadsafe until they will be added
// to the event_queue by the emu thread
Common::MPSCQueue<Event> ts_queue;
// Are we in a function that has been called from Advance()
// If events are sheduled from a function that gets called from Advance(),
// don't change slice_length and downcount.
// The time between CoreTiming being intialized and the first call to Advance() is
// considered the slice boundary between slice -1 and slice 0. Dispatcher loops must call
// Advance() before executing the first cycle of each slice to prepare the slice length and
// downcount for that slice.
bool is_timer_sane = true;
s64 slice_length = MAX_SLICE_LENGTH;
s64 downcount = MAX_SLICE_LENGTH;
s64 executed_ticks = 0;
u64 idled_cycles = 0;
// Stores a scaling for the internal clockspeed. Changing this number results in
// under/overclocking the guest cpu
double cpu_clock_scale = 1.0;
};
explicit Timing(std::size_t num_cores, u32 cpu_clock_percentage);
~Timing(){};
/**
* Returns the event_type identifier. if name is not unique, it will assert.
*/
TimingEventType* RegisterEvent(const std::string& name, TimedCallback callback);
void ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata = 0,
std::size_t core_id = std::numeric_limits<std::size_t>::max());
void UnscheduleEvent(const TimingEventType* event_type, u64 userdata);
/// We only permit one event of each type in the queue at a time.
void RemoveEvent(const TimingEventType* event_type);
void SetCurrentTimer(std::size_t core_id);
s64 GetTicks() const;
s64 GetGlobalTicks() const;
void AddToGlobalTicks(s64 ticks) {
global_timer += ticks;
}
/**
* Updates the value of the cpu clock scaling to the new percentage.
*/
void UpdateClockSpeed(u32 cpu_clock_percentage);
std::chrono::microseconds GetGlobalTimeUs() const;
std::shared_ptr<Timer> GetTimer(std::size_t cpu_id);
private:
s64 global_timer = 0;
// unordered_map stores each element separately as a linked list node so pointers to
// elements remain stable regardless of rehashes/resizing.
std::unordered_map<std::string, TimingEventType> event_types = {};
std::vector<std::shared_ptr<Timer>> timers;
std::shared_ptr<Timer> current_timer;
// Stores a scaling for the internal clockspeed. Changing this number results in
// under/overclocking the guest cpu
double cpu_clock_scale = 1.0;
};
} // namespace Core