citra/src/common/ring_buffer.h
GPUCode 2b20082581
common: Miscellaneous cleanups (#7239)
* code: Remove some old msvc workarounds

* android: Upgrade to NDK 26

* Allows access to newer libc++

* common/swap: Make use of std::endian

Allows removing a bunch of defines in favor of a two liner.

* common: Remove misc.cpp

* GetLastErrorMsg has been in error.h for a while and also helps removing a depedency from a hot header like common_funcs

* common: use SetThreadDescription API for thread names

* common: Remove linear disk cache

* Has never been used?

* bit_set: Make constexpr

* ring_buffer: Use feature macro

* bit_set: Use <bit> and concepts

* gsp_gpu: Restore comment

* core: Ignore GCC warning

---------

Co-authored-by: Lioncash <mathew1800@gmail.com>
Co-authored-by: Liam <byteslice@airmail.cc>
2023-12-14 16:26:33 +02:00

124 lines
4.5 KiB
C++

// Copyright 2018 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <algorithm>
#include <array>
#include <atomic>
#include <cstddef>
#include <cstring>
#include <limits>
#include <new>
#include <span>
#include <type_traits>
#include <vector>
#include "common/common_types.h"
namespace Common {
/// SPSC ring buffer
/// @tparam T Element type
/// @tparam capacity Number of slots in ring buffer
/// @tparam granularity Slot size in terms of number of elements
template <typename T, std::size_t capacity, std::size_t granularity = 1>
class RingBuffer {
/// A "slot" is made of `granularity` elements of `T`.
static constexpr std::size_t slot_size = granularity * sizeof(T);
// T must be safely memcpy-able and have a trivial default constructor.
static_assert(std::is_trivial_v<T>);
// Ensure capacity is sensible.
static_assert(capacity < std::numeric_limits<std::size_t>::max() / 2 / granularity);
static_assert((capacity & (capacity - 1)) == 0, "capacity must be a power of two");
// Ensure lock-free.
static_assert(std::atomic_size_t::is_always_lock_free);
public:
/// Pushes slots into the ring buffer
/// @param new_slots Pointer to the slots to push
/// @param slot_count Number of slots to push
/// @returns The number of slots actually pushed
std::size_t Push(const void* new_slots, std::size_t slot_count) {
const std::size_t write_index = m_write_index.load();
const std::size_t slots_free = capacity + m_read_index.load() - write_index;
const std::size_t push_count = std::min(slot_count, slots_free);
const std::size_t pos = write_index % capacity;
const std::size_t first_copy = std::min(capacity - pos, push_count);
const std::size_t second_copy = push_count - first_copy;
const char* in = static_cast<const char*>(new_slots);
std::memcpy(m_data.data() + pos * granularity, in, first_copy * slot_size);
in += first_copy * slot_size;
std::memcpy(m_data.data(), in, second_copy * slot_size);
m_write_index.store(write_index + push_count);
return push_count;
}
std::size_t Push(std::span<const T> input) {
return Push(input.data(), input.size() / granularity);
}
/// Pops slots from the ring buffer
/// @param output Where to store the popped slots
/// @param max_slots Maximum number of slots to pop
/// @returns The number of slots actually popped
std::size_t Pop(void* output, std::size_t max_slots = ~std::size_t(0)) {
const std::size_t read_index = m_read_index.load();
const std::size_t slots_filled = m_write_index.load() - read_index;
const std::size_t pop_count = std::min(slots_filled, max_slots);
const std::size_t pos = read_index % capacity;
const std::size_t first_copy = std::min(capacity - pos, pop_count);
const std::size_t second_copy = pop_count - first_copy;
char* out = static_cast<char*>(output);
std::memcpy(out, m_data.data() + pos * granularity, first_copy * slot_size);
out += first_copy * slot_size;
std::memcpy(out, m_data.data(), second_copy * slot_size);
m_read_index.store(read_index + pop_count);
return pop_count;
}
std::vector<T> Pop(std::size_t max_slots = ~std::size_t(0)) {
std::vector<T> out(std::min(max_slots, capacity) * granularity);
const std::size_t count = Pop(out.data(), out.size() / granularity);
out.resize(count * granularity);
return out;
}
/// @returns Number of slots used
[[nodiscard]] std::size_t Size() const {
return m_write_index.load() - m_read_index.load();
}
/// @returns Maximum size of ring buffer
[[nodiscard]] constexpr std::size_t Capacity() const {
return capacity;
}
private:
// It is important to separate the below atomics for performance reasons:
// Having them on the same cache-line would result in false-sharing between them.
#ifdef __cpp_lib_hardware_interference_size
static constexpr std::size_t padding_size =
std::hardware_destructive_interference_size - sizeof(std::atomic_size_t);
#else
static constexpr std::size_t padding_size = 128 - sizeof(std::atomic_size_t);
#endif
std::atomic_size_t m_read_index{0};
char padding1[padding_size];
std::atomic_size_t m_write_index{0};
char padding2[padding_size];
std::array<T, granularity * capacity> m_data;
};
} // namespace Common