mirror of
https://github.com/PabloMK7/citra.git
synced 2024-12-12 17:19:50 +00:00
234 lines
8.1 KiB
C++
234 lines
8.1 KiB
C++
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#pragma once
|
|
|
|
/**
|
|
* This is a system to schedule events into the emulated machine's future. Time is measured
|
|
* in main CPU clock cycles.
|
|
*
|
|
* To schedule an event, you first have to register its type. This is where you pass in the
|
|
* callback. You then schedule events using the type id you get back.
|
|
*
|
|
* The int cyclesLate that the callbacks get is how many cycles late it was.
|
|
* So to schedule a new event on a regular basis:
|
|
* inside callback:
|
|
* ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever")
|
|
*/
|
|
|
|
#include <chrono>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include "common/common_types.h"
|
|
#include "common/logging/log.h"
|
|
#include "common/threadsafe_queue.h"
|
|
|
|
// The timing we get from the assembly is 268,111,855.956 Hz
|
|
// It is possible that this number isn't just an integer because the compiler could have
|
|
// optimized the multiplication by a multiply-by-constant division.
|
|
// Rounding to the nearest integer should be fine
|
|
constexpr u64 BASE_CLOCK_RATE_ARM11 = 268111856;
|
|
constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / BASE_CLOCK_RATE_ARM11;
|
|
|
|
inline s64 msToCycles(int ms) {
|
|
// since ms is int there is no way to overflow
|
|
return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ms) / 1000;
|
|
}
|
|
|
|
inline s64 msToCycles(float ms) {
|
|
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.001f) * ms);
|
|
}
|
|
|
|
inline s64 msToCycles(double ms) {
|
|
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.001) * ms);
|
|
}
|
|
|
|
inline s64 usToCycles(float us) {
|
|
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.000001f) * us);
|
|
}
|
|
|
|
inline s64 usToCycles(int us) {
|
|
return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us) / 1000000);
|
|
}
|
|
|
|
inline s64 usToCycles(s64 us) {
|
|
if (us / 1000000 > MAX_VALUE_TO_MULTIPLY) {
|
|
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
|
|
return std::numeric_limits<s64>::max();
|
|
}
|
|
if (us > MAX_VALUE_TO_MULTIPLY) {
|
|
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
|
|
return BASE_CLOCK_RATE_ARM11 * (us / 1000000);
|
|
}
|
|
return (BASE_CLOCK_RATE_ARM11 * us) / 1000000;
|
|
}
|
|
|
|
inline s64 usToCycles(u64 us) {
|
|
if (us / 1000000 > MAX_VALUE_TO_MULTIPLY) {
|
|
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
|
|
return std::numeric_limits<s64>::max();
|
|
}
|
|
if (us > MAX_VALUE_TO_MULTIPLY) {
|
|
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
|
|
return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us / 1000000);
|
|
}
|
|
return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(us)) / 1000000;
|
|
}
|
|
|
|
inline s64 nsToCycles(float ns) {
|
|
return static_cast<s64>(BASE_CLOCK_RATE_ARM11 * (0.000000001f) * ns);
|
|
}
|
|
|
|
inline s64 nsToCycles(int ns) {
|
|
return BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ns) / 1000000000;
|
|
}
|
|
|
|
inline s64 nsToCycles(s64 ns) {
|
|
if (ns / 1000000000 > MAX_VALUE_TO_MULTIPLY) {
|
|
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
|
|
return std::numeric_limits<s64>::max();
|
|
}
|
|
if (ns > MAX_VALUE_TO_MULTIPLY) {
|
|
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
|
|
return BASE_CLOCK_RATE_ARM11 * (ns / 1000000000);
|
|
}
|
|
return (BASE_CLOCK_RATE_ARM11 * ns) / 1000000000;
|
|
}
|
|
|
|
inline s64 nsToCycles(u64 ns) {
|
|
if (ns / 1000000000 > MAX_VALUE_TO_MULTIPLY) {
|
|
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
|
|
return std::numeric_limits<s64>::max();
|
|
}
|
|
if (ns > MAX_VALUE_TO_MULTIPLY) {
|
|
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
|
|
return BASE_CLOCK_RATE_ARM11 * (static_cast<s64>(ns) / 1000000000);
|
|
}
|
|
return (BASE_CLOCK_RATE_ARM11 * static_cast<s64>(ns)) / 1000000000;
|
|
}
|
|
|
|
inline u64 cyclesToNs(s64 cycles) {
|
|
return cycles * 1000000000 / BASE_CLOCK_RATE_ARM11;
|
|
}
|
|
|
|
inline s64 cyclesToUs(s64 cycles) {
|
|
return cycles * 1000000 / BASE_CLOCK_RATE_ARM11;
|
|
}
|
|
|
|
inline u64 cyclesToMs(s64 cycles) {
|
|
return cycles * 1000 / BASE_CLOCK_RATE_ARM11;
|
|
}
|
|
|
|
namespace Core {
|
|
|
|
using TimedCallback = std::function<void(u64 userdata, int cycles_late)>;
|
|
|
|
struct TimingEventType {
|
|
TimedCallback callback;
|
|
const std::string* name;
|
|
};
|
|
|
|
class Timing {
|
|
public:
|
|
~Timing();
|
|
|
|
/**
|
|
* This should only be called from the emu thread, if you are calling it any other thread, you
|
|
* are doing something evil
|
|
*/
|
|
u64 GetTicks() const;
|
|
u64 GetIdleTicks() const;
|
|
void AddTicks(u64 ticks);
|
|
|
|
/**
|
|
* Returns the event_type identifier. if name is not unique, it will assert.
|
|
*/
|
|
TimingEventType* RegisterEvent(const std::string& name, TimedCallback callback);
|
|
|
|
/**
|
|
* After the first Advance, the slice lengths and the downcount will be reduced whenever an
|
|
* event is scheduled earlier than the current values. Scheduling from a callback will not
|
|
* update the downcount until the Advance() completes.
|
|
*/
|
|
void ScheduleEvent(s64 cycles_into_future, const TimingEventType* event_type, u64 userdata = 0);
|
|
|
|
/**
|
|
* This is to be called when outside of hle threads, such as the graphics thread, wants to
|
|
* schedule things to be executed on the main thread.
|
|
* Not that this doesn't change slice_length and thus events scheduled by this might be called
|
|
* with a delay of up to MAX_SLICE_LENGTH
|
|
*/
|
|
void ScheduleEventThreadsafe(s64 cycles_into_future, const TimingEventType* event_type,
|
|
u64 userdata);
|
|
|
|
void UnscheduleEvent(const TimingEventType* event_type, u64 userdata);
|
|
|
|
/// We only permit one event of each type in the queue at a time.
|
|
void RemoveEvent(const TimingEventType* event_type);
|
|
void RemoveNormalAndThreadsafeEvent(const TimingEventType* event_type);
|
|
|
|
/** Advance must be called at the beginning of dispatcher loops, not the end. Advance() ends
|
|
* the previous timing slice and begins the next one, you must Advance from the previous
|
|
* slice to the current one before executing any cycles. CoreTiming starts in slice -1 so an
|
|
* Advance() is required to initialize the slice length before the first cycle of emulated
|
|
* instructions is executed.
|
|
*/
|
|
void Advance();
|
|
void MoveEvents();
|
|
|
|
/// Pretend that the main CPU has executed enough cycles to reach the next event.
|
|
void Idle();
|
|
|
|
void ForceExceptionCheck(s64 cycles);
|
|
|
|
std::chrono::microseconds GetGlobalTimeUs() const;
|
|
|
|
s64 GetDowncount() const;
|
|
|
|
private:
|
|
struct Event {
|
|
s64 time;
|
|
u64 fifo_order;
|
|
u64 userdata;
|
|
const TimingEventType* type;
|
|
|
|
bool operator>(const Event& right) const;
|
|
bool operator<(const Event& right) const;
|
|
};
|
|
|
|
static constexpr int MAX_SLICE_LENGTH = 20000;
|
|
|
|
s64 global_timer = 0;
|
|
s64 slice_length = MAX_SLICE_LENGTH;
|
|
s64 downcount = MAX_SLICE_LENGTH;
|
|
|
|
// unordered_map stores each element separately as a linked list node so pointers to
|
|
// elements remain stable regardless of rehashes/resizing.
|
|
std::unordered_map<std::string, TimingEventType> event_types;
|
|
|
|
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
|
|
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
|
|
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't
|
|
// accomodated by the standard adaptor class.
|
|
std::vector<Event> event_queue;
|
|
u64 event_fifo_id = 0;
|
|
// the queue for storing the events from other threads threadsafe until they will be added
|
|
// to the event_queue by the emu thread
|
|
Common::MPSCQueue<Event, false> ts_queue;
|
|
s64 idled_cycles = 0;
|
|
|
|
// Are we in a function that has been called from Advance()
|
|
// If events are sheduled from a function that gets called from Advance(),
|
|
// don't change slice_length and downcount.
|
|
// The time between CoreTiming being intialized and the first call to Advance() is considered
|
|
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
|
|
// executing the first cycle of each slice to prepare the slice length and downcount for
|
|
// that slice.
|
|
bool is_global_timer_sane = true;
|
|
};
|
|
|
|
} // namespace Core
|