forked from Mirror/Ryujinx
00579927e4
* Initial implementation of KProcess * Some improvements to the memory manager, implement back guest stack trace printing * Better GetInfo implementation, improve checking in some places with information from process capabilities * Allow the cpu to read/write from the correct memory locations for accesses crossing a page boundary * Change long -> ulong for address/size on memory related methods to avoid unnecessary casts * Attempt at implementing ldr:ro with new KProcess * Allow BSS with size 0 on ldr:ro * Add checking for memory block slab heap usage, return errors if full, exit gracefully * Use KMemoryBlockSize const from KMemoryManager * Allow all methods to read from non-contiguous locations * Fix for TransactParcelAuto * Address PR feedback, additionally fix some small issues related to the KIP loader and implement SVCs GetProcessId, GetProcessList, GetSystemInfo, CreatePort and ManageNamedPort * Fix wrong check for source pages count from page list on MapPhysicalMemory * Fix some issues with UnloadNro on ldr:ro
233 lines
No EOL
7.7 KiB
C#
233 lines
No EOL
7.7 KiB
C#
using System;
|
|
using System.Collections.Generic;
|
|
using System.Linq;
|
|
|
|
namespace Ryujinx.HLE.HOS.Kernel
|
|
{
|
|
partial class KScheduler : IDisposable
|
|
{
|
|
public const int PrioritiesCount = 64;
|
|
public const int CpuCoresCount = 4;
|
|
|
|
private const int PreemptionPriorityCores012 = 59;
|
|
private const int PreemptionPriorityCore3 = 63;
|
|
|
|
private Horizon System;
|
|
|
|
public KSchedulingData SchedulingData { get; private set; }
|
|
|
|
public KCoreContext[] CoreContexts { get; private set; }
|
|
|
|
public bool ThreadReselectionRequested { get; set; }
|
|
|
|
public KScheduler(Horizon System)
|
|
{
|
|
this.System = System;
|
|
|
|
SchedulingData = new KSchedulingData();
|
|
|
|
CoreManager = new HleCoreManager();
|
|
|
|
CoreContexts = new KCoreContext[CpuCoresCount];
|
|
|
|
for (int Core = 0; Core < CpuCoresCount; Core++)
|
|
{
|
|
CoreContexts[Core] = new KCoreContext(this, CoreManager);
|
|
}
|
|
}
|
|
|
|
private void PreemptThreads()
|
|
{
|
|
System.CriticalSection.Enter();
|
|
|
|
PreemptThread(PreemptionPriorityCores012, 0);
|
|
PreemptThread(PreemptionPriorityCores012, 1);
|
|
PreemptThread(PreemptionPriorityCores012, 2);
|
|
PreemptThread(PreemptionPriorityCore3, 3);
|
|
|
|
System.CriticalSection.Leave();
|
|
}
|
|
|
|
private void PreemptThread(int Prio, int Core)
|
|
{
|
|
IEnumerable<KThread> ScheduledThreads = SchedulingData.ScheduledThreads(Core);
|
|
|
|
KThread SelectedThread = ScheduledThreads.FirstOrDefault(x => x.DynamicPriority == Prio);
|
|
|
|
//Yield priority queue.
|
|
if (SelectedThread != null)
|
|
{
|
|
SchedulingData.Reschedule(Prio, Core, SelectedThread);
|
|
}
|
|
|
|
IEnumerable<KThread> SuitableCandidates()
|
|
{
|
|
foreach (KThread Thread in SchedulingData.SuggestedThreads(Core))
|
|
{
|
|
int SrcCore = Thread.CurrentCore;
|
|
|
|
if (SrcCore >= 0)
|
|
{
|
|
KThread HighestPrioSrcCore = SchedulingData.ScheduledThreads(SrcCore).FirstOrDefault();
|
|
|
|
if (HighestPrioSrcCore != null && HighestPrioSrcCore.DynamicPriority < 2)
|
|
{
|
|
break;
|
|
}
|
|
|
|
if (HighestPrioSrcCore == Thread)
|
|
{
|
|
continue;
|
|
}
|
|
}
|
|
|
|
//If the candidate was scheduled after the current thread, then it's not worth it.
|
|
if (SelectedThread == null || SelectedThread.LastScheduledTime >= Thread.LastScheduledTime)
|
|
{
|
|
yield return Thread;
|
|
}
|
|
}
|
|
}
|
|
|
|
//Select candidate threads that could run on this core.
|
|
//Only take into account threads that are not yet selected.
|
|
KThread Dst = SuitableCandidates().FirstOrDefault(x => x.DynamicPriority == Prio);
|
|
|
|
if (Dst != null)
|
|
{
|
|
SchedulingData.TransferToCore(Prio, Core, Dst);
|
|
|
|
SelectedThread = Dst;
|
|
}
|
|
|
|
//If the priority of the currently selected thread is lower than preemption priority,
|
|
//then allow threads with lower priorities to be selected aswell.
|
|
if (SelectedThread != null && SelectedThread.DynamicPriority > Prio)
|
|
{
|
|
Func<KThread, bool> Predicate = x => x.DynamicPriority >= SelectedThread.DynamicPriority;
|
|
|
|
Dst = SuitableCandidates().FirstOrDefault(Predicate);
|
|
|
|
if (Dst != null)
|
|
{
|
|
SchedulingData.TransferToCore(Dst.DynamicPriority, Core, Dst);
|
|
}
|
|
}
|
|
|
|
ThreadReselectionRequested = true;
|
|
}
|
|
|
|
public void SelectThreads()
|
|
{
|
|
ThreadReselectionRequested = false;
|
|
|
|
for (int Core = 0; Core < CpuCoresCount; Core++)
|
|
{
|
|
KThread Thread = SchedulingData.ScheduledThreads(Core).FirstOrDefault();
|
|
|
|
CoreContexts[Core].SelectThread(Thread);
|
|
}
|
|
|
|
for (int Core = 0; Core < CpuCoresCount; Core++)
|
|
{
|
|
//If the core is not idle (there's already a thread running on it),
|
|
//then we don't need to attempt load balancing.
|
|
if (SchedulingData.ScheduledThreads(Core).Any())
|
|
{
|
|
continue;
|
|
}
|
|
|
|
int[] SrcCoresHighestPrioThreads = new int[CpuCoresCount];
|
|
|
|
int SrcCoresHighestPrioThreadsCount = 0;
|
|
|
|
KThread Dst = null;
|
|
|
|
//Select candidate threads that could run on this core.
|
|
//Give preference to threads that are not yet selected.
|
|
foreach (KThread Thread in SchedulingData.SuggestedThreads(Core))
|
|
{
|
|
if (Thread.CurrentCore < 0 || Thread != CoreContexts[Thread.CurrentCore].SelectedThread)
|
|
{
|
|
Dst = Thread;
|
|
|
|
break;
|
|
}
|
|
|
|
SrcCoresHighestPrioThreads[SrcCoresHighestPrioThreadsCount++] = Thread.CurrentCore;
|
|
}
|
|
|
|
//Not yet selected candidate found.
|
|
if (Dst != null)
|
|
{
|
|
//Priorities < 2 are used for the kernel message dispatching
|
|
//threads, we should skip load balancing entirely.
|
|
if (Dst.DynamicPriority >= 2)
|
|
{
|
|
SchedulingData.TransferToCore(Dst.DynamicPriority, Core, Dst);
|
|
|
|
CoreContexts[Core].SelectThread(Dst);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
//All candiates are already selected, choose the best one
|
|
//(the first one that doesn't make the source core idle if moved).
|
|
for (int Index = 0; Index < SrcCoresHighestPrioThreadsCount; Index++)
|
|
{
|
|
int SrcCore = SrcCoresHighestPrioThreads[Index];
|
|
|
|
KThread Src = SchedulingData.ScheduledThreads(SrcCore).ElementAtOrDefault(1);
|
|
|
|
if (Src != null)
|
|
{
|
|
//Run the second thread on the queue on the source core,
|
|
//move the first one to the current core.
|
|
KThread OrigSelectedCoreSrc = CoreContexts[SrcCore].SelectedThread;
|
|
|
|
CoreContexts[SrcCore].SelectThread(Src);
|
|
|
|
SchedulingData.TransferToCore(OrigSelectedCoreSrc.DynamicPriority, Core, OrigSelectedCoreSrc);
|
|
|
|
CoreContexts[Core].SelectThread(OrigSelectedCoreSrc);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
public KThread GetCurrentThread()
|
|
{
|
|
lock (CoreContexts)
|
|
{
|
|
for (int Core = 0; Core < CpuCoresCount; Core++)
|
|
{
|
|
if (CoreContexts[Core].CurrentThread?.Context.IsCurrentThread() ?? false)
|
|
{
|
|
return CoreContexts[Core].CurrentThread;
|
|
}
|
|
}
|
|
}
|
|
|
|
throw new InvalidOperationException("Current thread is not scheduled!");
|
|
}
|
|
|
|
public KProcess GetCurrentProcess()
|
|
{
|
|
return GetCurrentThread().Owner;
|
|
}
|
|
|
|
public void Dispose()
|
|
{
|
|
Dispose(true);
|
|
}
|
|
|
|
protected virtual void Dispose(bool Disposing)
|
|
{
|
|
if (Disposing)
|
|
{
|
|
KeepPreempting = false;
|
|
}
|
|
}
|
|
}
|
|
} |