embassy/embassy-nrf/src/i2s.rs

1108 lines
28 KiB
Rust
Raw Normal View History

#![macro_use]
2022-11-18 23:29:05 +00:00
//! Support for I2S audio
2022-11-12 17:48:57 +00:00
use core::future::poll_fn;
2022-11-16 23:19:22 +00:00
use core::marker::PhantomData;
2022-11-12 17:48:57 +00:00
use core::sync::atomic::{compiler_fence, Ordering};
use core::task::Poll;
2022-11-18 23:29:05 +00:00
use embassy_cortex_m::interrupt::InterruptExt;
2022-11-12 17:48:57 +00:00
use embassy_hal_common::drop::OnDrop;
use embassy_hal_common::{into_ref, PeripheralRef};
2022-11-09 20:58:56 +00:00
use crate::gpio::{AnyPin, Pin as GpioPin};
use crate::interrupt::Interrupt;
2022-11-18 23:29:05 +00:00
use crate::pac::i2s::RegisterBlock;
2022-11-09 20:58:56 +00:00
use crate::Peripheral;
// TODO: Define those in lib.rs somewhere else
2022-11-18 23:29:05 +00:00
/// I2S EasyDMA MAXCNT bit length = 14
const MAX_DMA_MAXCNT: u32 = 1 << 14;
2022-11-18 23:29:05 +00:00
/// Limits for Easy DMA - it can only read from data ram
pub const SRAM_LOWER: usize = 0x2000_0000;
pub const SRAM_UPPER: usize = 0x3000_0000;
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
#[non_exhaustive]
pub enum Error {
BufferTooLong,
BufferZeroLength,
2022-11-16 23:19:22 +00:00
BufferNotInDataMemory,
BufferMisaligned,
2022-11-16 23:19:22 +00:00
BufferLengthMisaligned,
}
2022-11-18 23:29:05 +00:00
/// Approximate sample rates.
///
/// Those are common sample rates that can not be configured without an small error.
///
/// For custom master clock configuration, please refer to [Mode].
#[derive(Clone, Copy)]
pub enum ApproxSampleRate {
_11025,
_16000,
_22050,
_32000,
_44100,
_48000,
}
impl From<ApproxSampleRate> for Mode {
fn from(value: ApproxSampleRate) -> Self {
match value {
// error = 86
ApproxSampleRate::_11025 => Mode::Master {
freq: MckFreq::_32MDiv15,
ratio: Ratio::_192x,
},
// error = 127
ApproxSampleRate::_16000 => Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_96x,
},
// error = 172
ApproxSampleRate::_22050 => Mode::Master {
freq: MckFreq::_32MDiv15,
ratio: Ratio::_96x,
},
// error = 254
ApproxSampleRate::_32000 => Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_48x,
},
// error = 344
ApproxSampleRate::_44100 => Mode::Master {
freq: MckFreq::_32MDiv15,
ratio: Ratio::_48x,
},
// error = 381
ApproxSampleRate::_48000 => Mode::Master {
freq: MckFreq::_32MDiv21,
ratio: Ratio::_32x,
},
}
}
}
impl ApproxSampleRate {
pub fn sample_rate(&self) -> u32 {
// This will always provide a Master mode, so it is safe to unwrap.
Mode::from(*self).sample_rate().unwrap()
}
}
/// Exact sample rates.
///
/// Those are non standard sample rates that can be configured without error.
///
/// For custom master clock configuration, please refer to [Mode].
#[derive(Clone, Copy)]
pub enum ExactSampleRate {
_8000,
_10582,
_12500,
_15625,
_15873,
_25000,
_31250,
_50000,
_62500,
_100000,
_125000,
}
2022-11-12 17:48:57 +00:00
2022-11-18 23:29:05 +00:00
impl ExactSampleRate {
pub fn sample_rate(&self) -> u32 {
// This will always provide a Master mode, so it is safe to unwrap.
Mode::from(*self).sample_rate().unwrap()
}
}
impl From<ExactSampleRate> for Mode {
fn from(value: ExactSampleRate) -> Self {
match value {
ExactSampleRate::_8000 => Mode::Master {
freq: MckFreq::_32MDiv125,
ratio: Ratio::_32x,
},
ExactSampleRate::_10582 => Mode::Master {
freq: MckFreq::_32MDiv63,
ratio: Ratio::_48x,
},
ExactSampleRate::_12500 => Mode::Master {
freq: MckFreq::_32MDiv10,
ratio: Ratio::_256x,
},
ExactSampleRate::_15625 => Mode::Master {
freq: MckFreq::_32MDiv32,
ratio: Ratio::_64x,
},
ExactSampleRate::_15873 => Mode::Master {
freq: MckFreq::_32MDiv63,
ratio: Ratio::_32x,
},
ExactSampleRate::_25000 => Mode::Master {
freq: MckFreq::_32MDiv10,
ratio: Ratio::_128x,
},
ExactSampleRate::_31250 => Mode::Master {
freq: MckFreq::_32MDiv32,
ratio: Ratio::_32x,
},
ExactSampleRate::_50000 => Mode::Master {
freq: MckFreq::_32MDiv10,
ratio: Ratio::_64x,
},
ExactSampleRate::_62500 => Mode::Master {
freq: MckFreq::_32MDiv16,
ratio: Ratio::_32x,
},
ExactSampleRate::_100000 => Mode::Master {
freq: MckFreq::_32MDiv10,
ratio: Ratio::_32x,
},
ExactSampleRate::_125000 => Mode::Master {
freq: MckFreq::_32MDiv8,
ratio: Ratio::_32x,
},
}
}
}
/// I2S configuration.
#[derive(Clone)]
#[non_exhaustive]
pub struct Config {
2022-11-12 17:48:57 +00:00
pub mode: Mode,
2022-11-09 21:47:55 +00:00
pub swidth: SampleWidth,
pub align: Align,
pub format: Format,
pub channels: Channels,
}
impl Default for Config {
fn default() -> Self {
Self {
2022-11-18 23:29:05 +00:00
mode: ExactSampleRate::_31250.into(),
2022-11-09 21:47:55 +00:00
swidth: SampleWidth::_16bit,
align: Align::Left,
format: Format::I2S,
channels: Channels::Stereo,
}
}
}
2022-11-12 17:48:57 +00:00
/// I2S Mode
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Mode {
Master { freq: MckFreq, ratio: Ratio },
Slave,
}
impl Mode {
pub fn sample_rate(&self) -> Option<u32> {
match self {
Mode::Master { freq, ratio } => Some(freq.to_frequency() / ratio.to_divisor()),
Mode::Slave => None,
}
}
}
/// Master clock generator frequency.
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum MckFreq {
_32MDiv8,
_32MDiv10,
_32MDiv11,
_32MDiv15,
_32MDiv16,
_32MDiv21,
_32MDiv23,
_32MDiv30,
_32MDiv31,
_32MDiv32,
_32MDiv42,
_32MDiv63,
_32MDiv125,
}
impl MckFreq {
2022-11-16 23:19:22 +00:00
const REGISTER_VALUES: &'static [u32] = &[
2022-11-12 17:48:57 +00:00
0x20000000, 0x18000000, 0x16000000, 0x11000000, 0x10000000, 0x0C000000, 0x0B000000, 0x08800000, 0x08400000,
0x08000000, 0x06000000, 0x04100000, 0x020C0000,
];
2022-11-16 23:19:22 +00:00
const FREQUENCIES: &'static [u32] = &[
2022-11-12 17:48:57 +00:00
4000000, 3200000, 2909090, 2133333, 2000000, 1523809, 1391304, 1066666, 1032258, 1000000, 761904, 507936,
256000,
];
2022-11-18 23:29:05 +00:00
/// Return the value that needs to be written to the register.
2022-11-12 17:48:57 +00:00
pub fn to_register_value(&self) -> u32 {
Self::REGISTER_VALUES[usize::from(*self)]
}
2022-11-18 23:29:05 +00:00
/// Return the master clock frequency.
2022-11-12 17:48:57 +00:00
pub fn to_frequency(&self) -> u32 {
Self::FREQUENCIES[usize::from(*self)]
}
}
impl From<MckFreq> for usize {
fn from(variant: MckFreq) -> Self {
variant as _
}
}
2022-11-18 23:29:05 +00:00
/// Master clock frequency ratio
///
/// Sample Rate = LRCK = MCK / Ratio
///
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Ratio {
_32x,
_48x,
_64x,
_96x,
_128x,
_192x,
_256x,
_384x,
_512x,
}
2022-11-12 17:48:57 +00:00
impl Ratio {
2022-11-16 23:19:22 +00:00
const RATIOS: &'static [u32] = &[32, 48, 64, 96, 128, 192, 256, 384, 512];
2022-11-12 17:48:57 +00:00
pub fn to_divisor(&self) -> u32 {
Self::RATIOS[u8::from(*self) as usize]
}
}
impl From<Ratio> for u8 {
fn from(variant: Ratio) -> Self {
variant as _
}
}
2022-11-18 23:29:05 +00:00
/// Sample width.
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum SampleWidth {
_8bit,
_16bit,
_24bit,
}
impl From<SampleWidth> for u8 {
fn from(variant: SampleWidth) -> Self {
variant as _
}
}
2022-11-18 23:29:05 +00:00
/// Channel used for the most significant sample value in a frame.
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Align {
Left,
Right,
}
impl From<Align> for bool {
fn from(variant: Align) -> Self {
match variant {
Align::Left => false,
Align::Right => true,
}
}
}
/// Frame format.
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Format {
I2S,
Aligned,
}
impl From<Format> for bool {
fn from(variant: Format) -> Self {
match variant {
Format::I2S => false,
Format::Aligned => true,
}
}
}
2022-11-18 23:29:05 +00:00
/// Channels
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub enum Channels {
Stereo,
2022-11-18 23:29:05 +00:00
/// Mono left
Left,
2022-11-18 23:29:05 +00:00
/// Mono right
Right,
}
impl From<Channels> for u8 {
fn from(variant: Channels) -> Self {
variant as _
}
}
2022-11-16 23:19:22 +00:00
/// Interface to the I2S peripheral using EasyDMA to offload the transmission and reception workload.
2022-11-09 21:47:55 +00:00
pub struct I2S<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
2022-11-09 21:47:55 +00:00
impl<'d, T: Instance> I2S<'d, T> {
/// Create a new I2S
pub fn new(
i2s: impl Peripheral<P = T> + 'd,
2022-11-12 17:48:57 +00:00
irq: impl Peripheral<P = T::Interrupt> + 'd,
mck: impl Peripheral<P = impl GpioPin> + 'd,
sck: impl Peripheral<P = impl GpioPin> + 'd,
lrck: impl Peripheral<P = impl GpioPin> + 'd,
sdin: impl Peripheral<P = impl GpioPin> + 'd,
sdout: impl Peripheral<P = impl GpioPin> + 'd,
config: Config,
) -> Self {
into_ref!(mck, sck, lrck, sdin, sdout);
Self::new_inner(
i2s,
2022-11-12 17:48:57 +00:00
irq,
2022-11-09 20:58:56 +00:00
mck.map_into(),
sck.map_into(),
lrck.map_into(),
sdin.map_into(),
sdout.map_into(),
config,
)
}
fn new_inner(
i2s: impl Peripheral<P = T> + 'd,
2022-11-12 17:48:57 +00:00
irq: impl Peripheral<P = T::Interrupt> + 'd,
mck: PeripheralRef<'d, AnyPin>,
sck: PeripheralRef<'d, AnyPin>,
lrck: PeripheralRef<'d, AnyPin>,
sdin: PeripheralRef<'d, AnyPin>,
sdout: PeripheralRef<'d, AnyPin>,
2022-11-09 21:47:55 +00:00
config: Config,
) -> Self {
2022-11-12 17:48:57 +00:00
into_ref!(i2s, irq, mck, sck, lrck, sdin, sdout);
2022-11-18 23:29:05 +00:00
Self::apply_config(&config);
Self::select_pins(mck, sck, lrck, sdin, sdout);
Self::setup_interrupt(irq);
2022-11-18 23:29:05 +00:00
T::regs().enable.write(|w| w.enable().enabled());
2022-11-16 23:19:22 +00:00
Self { _p: i2s }
}
2022-11-18 23:29:05 +00:00
/// I2S output only
2022-11-16 23:19:22 +00:00
pub fn output(self) -> Output<'d, T> {
Output { _p: self._p }
}
2022-11-18 23:29:05 +00:00
/// I2S input only
2022-11-16 23:19:22 +00:00
pub fn input(self) -> Input<'d, T> {
Input { _p: self._p }
}
2022-11-09 21:47:55 +00:00
2022-11-18 23:29:05 +00:00
/// I2S full duplex (input and output)
2022-11-16 23:19:22 +00:00
pub fn full_duplex(self) -> FullDuplex<'d, T> {
FullDuplex { _p: self._p }
2022-11-09 23:24:49 +00:00
}
2022-11-18 23:29:05 +00:00
fn apply_config(config: &Config) {
let c = &T::regs().config;
2022-11-12 17:48:57 +00:00
match config.mode {
Mode::Master { freq, ratio } => {
c.mode.write(|w| w.mode().master());
c.mcken.write(|w| w.mcken().enabled());
c.mckfreq
.write(|w| unsafe { w.mckfreq().bits(freq.to_register_value()) });
c.ratio.write(|w| unsafe { w.ratio().bits(ratio.into()) });
}
Mode::Slave => {
c.mode.write(|w| w.mode().slave());
}
};
2022-11-09 21:47:55 +00:00
2022-11-09 23:10:42 +00:00
c.swidth.write(|w| unsafe { w.swidth().bits(config.swidth.into()) });
c.align.write(|w| w.align().bit(config.align.into()));
c.format.write(|w| w.format().bit(config.format.into()));
c.channels
.write(|w| unsafe { w.channels().bits(config.channels.into()) });
2022-11-09 21:47:55 +00:00
}
2022-11-12 17:48:57 +00:00
fn select_pins(
mck: PeripheralRef<'d, AnyPin>,
sck: PeripheralRef<'d, AnyPin>,
lrck: PeripheralRef<'d, AnyPin>,
sdin: PeripheralRef<'d, AnyPin>,
sdout: PeripheralRef<'d, AnyPin>,
) {
2022-11-18 23:29:05 +00:00
let psel = &T::regs().psel;
2022-11-12 17:48:57 +00:00
psel.mck.write(|w| {
unsafe { w.bits(mck.psel_bits()) };
w.connect().connected()
});
psel.sck.write(|w| {
unsafe { w.bits(sck.psel_bits()) };
w.connect().connected()
});
psel.lrck.write(|w| {
unsafe { w.bits(lrck.psel_bits()) };
w.connect().connected()
});
psel.sdin.write(|w| {
unsafe { w.bits(sdin.psel_bits()) };
w.connect().connected()
});
psel.sdout.write(|w| {
unsafe { w.bits(sdout.psel_bits()) };
w.connect().connected()
});
}
2022-11-18 23:29:05 +00:00
fn setup_interrupt(irq: PeripheralRef<'d, T::Interrupt>) {
2022-11-12 17:48:57 +00:00
irq.set_handler(Self::on_interrupt);
irq.unpend();
irq.enable();
2022-11-16 23:19:22 +00:00
let device = Device::<T>::new();
device.disable_tx_ptr_interrupt();
device.disable_rx_ptr_interrupt();
2022-11-18 23:29:05 +00:00
device.disable_stopped_interrupt();
2022-11-16 23:19:22 +00:00
device.reset_tx_ptr_event();
device.reset_rx_ptr_event();
2022-11-18 23:29:05 +00:00
device.reset_stopped_event();
2022-11-16 23:19:22 +00:00
device.enable_tx_ptr_interrupt();
device.enable_rx_ptr_interrupt();
2022-11-18 23:29:05 +00:00
device.enable_stopped_interrupt();
}
fn on_interrupt(_: *mut ()) {
2022-11-16 23:19:22 +00:00
let device = Device::<T>::new();
let s = T::state();
2022-11-16 23:19:22 +00:00
if device.is_tx_ptr_updated() {
trace!("TX INT");
s.tx_waker.wake();
2022-11-16 23:19:22 +00:00
device.disable_tx_ptr_interrupt();
}
2022-11-16 23:19:22 +00:00
if device.is_rx_ptr_updated() {
trace!("RX INT");
s.rx_waker.wake();
2022-11-16 23:19:22 +00:00
device.disable_rx_ptr_interrupt();
}
2022-11-18 23:29:05 +00:00
if device.is_stopped() {
trace!("STOPPED INT");
s.stop_waker.wake();
device.disable_stopped_interrupt();
}
}
2022-11-16 23:19:22 +00:00
2022-11-18 23:29:05 +00:00
async fn stop() {
compiler_fence(Ordering::SeqCst);
2022-11-16 23:19:22 +00:00
let device = Device::<T>::new();
2022-11-18 23:29:05 +00:00
device.stop();
2022-11-18 23:29:05 +00:00
T::state().started.store(false, Ordering::Relaxed);
2022-11-12 17:48:57 +00:00
2022-11-18 23:29:05 +00:00
poll_fn(|cx| {
T::state().stop_waker.register(cx.waker());
if device.is_stopped() {
trace!("STOP: Ready");
device.reset_stopped_event();
Poll::Ready(())
} else {
trace!("STOP: Pending");
Poll::Pending
}
})
.await;
device.disable();
2022-11-16 23:19:22 +00:00
}
2022-11-12 17:48:57 +00:00
2022-11-18 23:29:05 +00:00
async fn send<B>(buffer: B) -> Result<(), Error>
2022-11-16 23:19:22 +00:00
where
B: Buffer,
{
trace!("SEND: {}", buffer.bytes_ptr() as u32);
2022-11-16 23:19:22 +00:00
let device = Device::<T>::new();
let drop = device.on_tx_drop();
2022-11-12 17:48:57 +00:00
compiler_fence(Ordering::SeqCst);
poll_fn(|cx| {
2022-11-16 23:19:22 +00:00
T::state().tx_waker.register(cx.waker());
if device.is_tx_ptr_updated() {
trace!("TX POLL: Ready");
device.reset_tx_ptr_event();
device.enable_tx_ptr_interrupt();
2022-11-12 17:48:57 +00:00
Poll::Ready(())
} else {
2022-11-16 23:19:22 +00:00
trace!("TX POLL: Pending");
2022-11-12 17:48:57 +00:00
Poll::Pending
}
})
.await;
2022-11-16 23:19:22 +00:00
device.set_tx_buffer(buffer)?;
2022-11-12 17:48:57 +00:00
compiler_fence(Ordering::SeqCst);
drop.defuse();
Ok(())
}
2022-11-18 23:29:05 +00:00
async fn receive<B>(buffer: B) -> Result<(), Error>
where
B: Buffer,
{
trace!("RECEIVE: {}", buffer.bytes_ptr() as u32);
let device = Device::<T>::new();
let drop = device.on_rx_drop();
compiler_fence(Ordering::SeqCst);
poll_fn(|cx| {
T::state().rx_waker.register(cx.waker());
if device.is_rx_ptr_updated() {
trace!("RX POLL: Ready");
device.reset_rx_ptr_event();
device.enable_rx_ptr_interrupt();
Poll::Ready(())
} else {
trace!("RX POLL: Pending");
Poll::Pending
}
})
.await;
device.set_rx_buffer(buffer)?;
compiler_fence(Ordering::SeqCst);
drop.defuse();
Ok(())
}
}
/// I2S output
pub struct Output<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Output<'d, T> {
/// Prepare the initial buffer and start the I2S transfer.
pub async fn start<B>(&self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
let device = Device::<T>::new();
let s = T::state();
if s.started.load(Ordering::Relaxed) {
self.stop().await;
}
device.enable();
device.enable_tx();
device.set_tx_buffer(buffer)?;
s.started.store(true, Ordering::Relaxed);
device.start();
Ok(())
}
/// Stops the I2S transfer and waits until it has stopped.
#[inline(always)]
pub async fn stop(&self) {
I2S::<T>::stop().await
}
/// Sets the given `buffer` for transmission in the DMA.
/// Buffer address must be 4 byte aligned and located in RAM.
/// The buffer must not be written while being used by the DMA,
/// which takes two other `send`s being awaited.
#[allow(unused_mut)]
pub async fn send<B>(&mut self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
I2S::<T>::send(buffer).await
}
}
2022-11-18 23:29:05 +00:00
/// I2S input
2022-11-16 23:19:22 +00:00
pub struct Input<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> Input<'d, T> {
2022-11-18 23:29:05 +00:00
/// Prepare the initial buffer and start the I2S transfer.
pub async fn start<B>(&self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
let device = Device::<T>::new();
let s = T::state();
if s.started.load(Ordering::Relaxed) {
self.stop().await;
}
device.enable();
device.enable_rx();
device.set_rx_buffer(buffer)?;
s.started.store(true, Ordering::Relaxed);
device.start();
Ok(())
}
/// Stops the I2S transfer and waits until it has stopped.
#[inline(always)]
pub async fn stop(&self) {
I2S::<T>::stop().await
}
/// Sets the given `buffer` for reception from the DMA.
/// Buffer address must be 4 byte aligned and located in RAM.
/// The buffer must not be read while being used by the DMA,
/// which takes two other `receive`s being awaited.
#[allow(unused_mut)]
pub async fn receive<B>(&mut self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
I2S::<T>::receive(buffer).await
}
2022-11-16 23:19:22 +00:00
}
2022-11-18 23:29:05 +00:00
/// I2S ful duplex (input & output)
2022-11-16 23:19:22 +00:00
pub struct FullDuplex<'d, T: Instance> {
_p: PeripheralRef<'d, T>,
}
impl<'d, T: Instance> FullDuplex<'d, T> {
2022-11-18 23:29:05 +00:00
/// Prepare the initial buffers and start the I2S transfer.
pub async fn start<B>(&self, buffer_out: B, buffer_in: B) -> Result<(), Error>
where
B: Buffer,
{
let device = Device::<T>::new();
let s = T::state();
if s.started.load(Ordering::Relaxed) {
self.stop().await;
}
device.enable();
device.enable_tx();
device.enable_rx();
device.set_tx_buffer(buffer_out)?;
device.set_rx_buffer(buffer_in)?;
s.started.store(true, Ordering::Relaxed);
device.start();
Ok(())
}
/// Stops the I2S transfer and waits until it has stopped.
#[inline(always)]
pub async fn stop(&self) {
I2S::<T>::stop().await
}
/// Sets the given `buffer_out` and `buffer_in` for transmission/reception from the DMA.
/// Buffer address must be 4 byte aligned and located in RAM.
/// The buffers must not be written/read while being used by the DMA,
/// which takes two other `send_and_receive` operations being awaited.
#[allow(unused_mut)]
pub async fn send_and_receive<B>(&mut self, buffer_out: B, buffer_in: B) -> Result<(), Error>
where
B: Buffer,
{
I2S::<T>::send(buffer_out).await?;
I2S::<T>::receive(buffer_in).await?;
Ok(())
}
2022-11-16 23:19:22 +00:00
}
2022-11-18 23:29:05 +00:00
/// Helper encapsulating common I2S device operations.
2022-11-16 23:19:22 +00:00
struct Device<T>(&'static RegisterBlock, PhantomData<T>);
impl<T: Instance> Device<T> {
fn new() -> Self {
Self(T::regs(), PhantomData)
}
#[inline(always)]
pub fn enable(&self) {
trace!("ENABLED");
self.0.enable.write(|w| w.enable().enabled());
}
#[inline(always)]
pub fn disable(&self) {
trace!("DISABLED");
self.0.enable.write(|w| w.enable().disabled());
}
#[inline(always)]
fn enable_tx(&self) {
trace!("TX ENABLED");
self.0.config.txen.write(|w| w.txen().enabled());
}
#[inline(always)]
fn disable_tx(&self) {
trace!("TX DISABLED");
self.0.config.txen.write(|w| w.txen().disabled());
}
#[inline(always)]
fn enable_rx(&self) {
trace!("RX ENABLED");
self.0.config.rxen.write(|w| w.rxen().enabled());
}
#[inline(always)]
fn disable_rx(&self) {
trace!("RX DISABLED");
self.0.config.rxen.write(|w| w.rxen().disabled());
}
#[inline(always)]
fn start(&self) {
trace!("START");
self.0.tasks_start.write(|w| unsafe { w.bits(1) });
}
2022-11-18 23:29:05 +00:00
#[inline(always)]
fn stop(&self) {
self.0.tasks_stop.write(|w| unsafe { w.bits(1) });
}
#[inline(always)]
fn is_stopped(&self) -> bool {
self.0.events_stopped.read().bits() != 0
}
#[inline(always)]
fn reset_stopped_event(&self) {
trace!("STOPPED EVENT: Reset");
self.0.events_stopped.reset();
}
#[inline(always)]
fn disable_stopped_interrupt(&self) {
trace!("STOPPED INTERRUPT: Disabled");
self.0.intenclr.write(|w| w.stopped().clear());
}
#[inline(always)]
fn enable_stopped_interrupt(&self) {
trace!("STOPPED INTERRUPT: Enabled");
self.0.intenset.write(|w| w.stopped().set());
}
2022-11-16 23:19:22 +00:00
#[inline]
fn set_tx_buffer<B>(&self, buffer: B) -> Result<(), Error>
2022-11-09 23:24:49 +00:00
where
B: Buffer,
{
2022-11-16 23:19:22 +00:00
let (ptr, maxcnt) = Self::validate_buffer(buffer)?;
self.0.rxtxd.maxcnt.write(|w| unsafe { w.bits(maxcnt) });
self.0.txd.ptr.write(|w| unsafe { w.ptr().bits(ptr) });
Ok(())
}
2022-11-09 23:24:49 +00:00
2022-11-16 23:19:22 +00:00
#[inline]
fn set_rx_buffer<B>(&self, buffer: B) -> Result<(), Error>
where
B: Buffer,
{
let (ptr, maxcnt) = Self::validate_buffer(buffer)?;
self.0.rxtxd.maxcnt.write(|w| unsafe { w.bits(maxcnt) });
self.0.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr) });
Ok(())
}
2022-11-09 23:24:49 +00:00
2022-11-16 23:19:22 +00:00
#[inline(always)]
fn is_tx_ptr_updated(&self) -> bool {
self.0.events_txptrupd.read().bits() != 0
}
2022-11-09 23:24:49 +00:00
2022-11-16 23:19:22 +00:00
#[inline(always)]
fn is_rx_ptr_updated(&self) -> bool {
self.0.events_rxptrupd.read().bits() != 0
}
2022-11-09 23:24:49 +00:00
2022-11-16 23:19:22 +00:00
#[inline(always)]
fn reset_tx_ptr_event(&self) {
trace!("TX PTR EVENT: Reset");
self.0.events_txptrupd.reset();
}
2022-11-09 23:24:49 +00:00
2022-11-16 23:19:22 +00:00
#[inline(always)]
fn reset_rx_ptr_event(&self) {
trace!("RX PTR EVENT: Reset");
self.0.events_rxptrupd.reset();
}
#[inline(always)]
fn disable_tx_ptr_interrupt(&self) {
trace!("TX PTR INTERRUPT: Disabled");
self.0.intenclr.write(|w| w.txptrupd().clear());
}
#[inline(always)]
fn disable_rx_ptr_interrupt(&self) {
trace!("RX PTR INTERRUPT: Disabled");
self.0.intenclr.write(|w| w.rxptrupd().clear());
}
#[inline(always)]
fn enable_tx_ptr_interrupt(&self) {
trace!("TX PTR INTERRUPT: Enabled");
self.0.intenset.write(|w| w.txptrupd().set());
}
#[inline(always)]
fn enable_rx_ptr_interrupt(&self) {
trace!("RX PTR INTERRUPT: Enabled");
self.0.intenclr.write(|w| w.rxptrupd().clear());
}
#[inline]
fn on_tx_drop(&self) -> OnDrop<fn()> {
OnDrop::new(move || {
trace!("TX DROP: Stopping");
let device = Device::<T>::new();
device.disable_tx_ptr_interrupt();
device.reset_tx_ptr_event();
device.disable_tx();
// TX is stopped almost instantly, spinning is fine.
while !device.is_tx_ptr_updated() {}
trace!("TX DROP: Stopped");
})
}
2022-11-18 23:29:05 +00:00
#[inline]
fn on_rx_drop(&self) -> OnDrop<fn()> {
OnDrop::new(move || {
trace!("RX DROP: Stopping");
let device = Device::<T>::new();
device.disable_rx_ptr_interrupt();
device.reset_rx_ptr_event();
device.disable_rx();
// TX is stopped almost instantly, spinning is fine.
while !device.is_rx_ptr_updated() {}
trace!("RX DROP: Stopped");
})
}
2022-11-16 23:19:22 +00:00
fn validate_buffer<B>(buffer: B) -> Result<(u32, u32), Error>
where
B: Buffer,
{
let ptr = buffer.bytes_ptr() as u32;
let len = buffer.bytes_len();
let maxcnt = ((len + core::mem::size_of::<u32>() - 1) / core::mem::size_of::<u32>()) as u32;
trace!("PTR={}, MAXCNT={}", ptr, maxcnt);
// TODO can we avoid repeating all those runtime checks for the same buffer again and again?
if ptr % 4 != 0 {
Err(Error::BufferMisaligned)
} else if len % 4 != 0 {
Err(Error::BufferLengthMisaligned)
} else if (ptr as usize) < SRAM_LOWER || (ptr as usize) > SRAM_UPPER {
Err(Error::BufferNotInDataMemory)
} else if maxcnt > MAX_DMA_MAXCNT {
Err(Error::BufferTooLong)
} else {
Ok((ptr, maxcnt))
}
2022-11-09 23:24:49 +00:00
}
}
2022-11-18 23:29:05 +00:00
/// Sample details
pub trait Sample: Sized + Copy + Default {
const WIDTH: usize;
const SCALE: Self;
}
impl Sample for i8 {
const WIDTH: usize = 8;
const SCALE: Self = 1 << (Self::WIDTH - 1);
}
impl Sample for i16 {
const WIDTH: usize = 16;
const SCALE: Self = 1 << (Self::WIDTH - 1);
}
impl Sample for i32 {
const WIDTH: usize = 24;
const SCALE: Self = 1 << (Self::WIDTH - 1);
}
/// A 4-bytes aligned [Buffer].
#[repr(align(4))]
pub struct AlignedBuffer<T: Sample, const N: usize>([T; N]);
impl<T: Sample, const N: usize> AlignedBuffer<T, N> {
pub fn new(array: [T; N]) -> Self {
Self(array)
}
}
impl<T: Sample, const N: usize> Default for AlignedBuffer<T, N> {
fn default() -> Self {
Self([T::default(); N])
}
}
impl<T: Sample, const N: usize> AsRef<[T]> for AlignedBuffer<T, N> {
fn as_ref(&self) -> &[T] {
self.0.as_slice()
}
}
impl<T: Sample, const N: usize> AsMut<[T]> for AlignedBuffer<T, N> {
fn as_mut(&mut self) -> &mut [T] {
self.0.as_mut_slice()
}
}
/// Common operations required for a buffer to be used by the DMA
2022-11-09 23:10:42 +00:00
pub trait Buffer: Sized {
fn bytes_ptr(&self) -> *const u8;
fn bytes_len(&self) -> usize;
}
2022-11-16 23:19:22 +00:00
impl Buffer for &[i8] {
2022-11-09 23:10:42 +00:00
#[inline]
fn bytes_ptr(&self) -> *const u8 {
2022-11-16 23:19:22 +00:00
self.as_ptr() as *const u8
2022-11-09 23:10:42 +00:00
}
#[inline]
fn bytes_len(&self) -> usize {
self.len()
}
}
impl Buffer for &[i16] {
#[inline]
fn bytes_ptr(&self) -> *const u8 {
self.as_ptr() as *const u8
}
#[inline]
fn bytes_len(&self) -> usize {
self.len() * core::mem::size_of::<i16>()
}
}
impl Buffer for &[i32] {
#[inline]
fn bytes_ptr(&self) -> *const u8 {
self.as_ptr() as *const u8
}
#[inline]
fn bytes_len(&self) -> usize {
2022-11-16 23:19:22 +00:00
self.len() * core::mem::size_of::<i32>()
2022-11-09 23:10:42 +00:00
}
}
pub(crate) mod sealed {
2022-11-18 23:29:05 +00:00
use core::sync::atomic::AtomicBool;
use embassy_sync::waitqueue::AtomicWaker;
2022-11-18 23:29:05 +00:00
/// Peripheral static state
pub struct State {
2022-11-18 23:29:05 +00:00
pub started: AtomicBool,
2022-11-12 17:48:57 +00:00
pub rx_waker: AtomicWaker,
pub tx_waker: AtomicWaker,
2022-11-18 23:29:05 +00:00
pub stop_waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
2022-11-18 23:29:05 +00:00
started: AtomicBool::new(false),
2022-11-12 17:48:57 +00:00
rx_waker: AtomicWaker::new(),
tx_waker: AtomicWaker::new(),
2022-11-18 23:29:05 +00:00
stop_waker: AtomicWaker::new(),
}
}
}
pub trait Instance {
2022-11-09 20:58:56 +00:00
fn regs() -> &'static crate::pac::i2s::RegisterBlock;
fn state() -> &'static State;
}
}
pub trait Instance: Peripheral<P = Self> + sealed::Instance + 'static + Send {
type Interrupt: Interrupt;
}
macro_rules! impl_i2s {
($type:ident, $pac_type:ident, $irq:ident) => {
impl crate::i2s::sealed::Instance for peripherals::$type {
2022-11-16 23:19:22 +00:00
fn regs() -> &'static crate::pac::i2s::RegisterBlock {
unsafe { &*pac::$pac_type::ptr() }
}
fn state() -> &'static crate::i2s::sealed::State {
static STATE: crate::i2s::sealed::State = crate::i2s::sealed::State::new();
&STATE
}
}
impl crate::i2s::Instance for peripherals::$type {
type Interrupt = crate::interrupt::$irq;
}
};
}