embassy/embassy-time/src/queue_generic.rs

475 lines
12 KiB
Rust
Raw Normal View History

2022-09-26 10:46:15 +00:00
use core::cell::RefCell;
use core::cmp::Ordering;
use core::task::Waker;
use atomic_polyfill::{AtomicU64, Ordering as AtomicOrdering};
use embassy_sync::blocking_mutex::raw::CriticalSectionRawMutex;
use embassy_sync::blocking_mutex::Mutex;
use heapless::sorted_linked_list::{LinkedIndexU8, Min, SortedLinkedList};
use crate::driver::{allocate_alarm, set_alarm, set_alarm_callback, AlarmHandle};
use crate::queue::TimerQueue;
use crate::Instant;
#[cfg(feature = "generic-queue-8")]
const QUEUE_SIZE: usize = 8;
#[cfg(feature = "generic-queue-16")]
const QUEUE_SIZE: usize = 16;
#[cfg(feature = "generic-queue-32")]
const QUEUE_SIZE: usize = 32;
#[cfg(feature = "generic-queue-64")]
const QUEUE_SIZE: usize = 32;
#[cfg(feature = "generic-queue-128")]
const QUEUE_SIZE: usize = 128;
#[cfg(not(any(
feature = "generic-queue-8",
feature = "generic-queue-16",
feature = "generic-queue-32",
feature = "generic-queue-64",
feature = "generic-queue-128"
)))]
const QUEUE_SIZE: usize = 64;
#[derive(Debug)]
struct Timer {
at: Instant,
waker: Waker,
}
impl PartialEq for Timer {
fn eq(&self, other: &Self) -> bool {
self.at == other.at
}
}
impl Eq for Timer {}
impl PartialOrd for Timer {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.at.partial_cmp(&other.at)
}
}
impl Ord for Timer {
fn cmp(&self, other: &Self) -> Ordering {
self.at.cmp(&other.at)
}
}
struct InnerQueue {
queue: SortedLinkedList<Timer, LinkedIndexU8, Min, { QUEUE_SIZE }>,
alarm: Option<AlarmHandle>,
alarm_at: Instant,
}
impl InnerQueue {
const fn new() -> Self {
Self {
queue: SortedLinkedList::new_u8(),
alarm: None,
alarm_at: Instant::MAX,
}
}
fn schedule_wake(&mut self, at: Instant, waker: &Waker, alarm_schedule: &AtomicU64) {
self.queue
.find_mut(|timer| timer.waker.will_wake(waker))
.map(|mut timer| {
timer.at = at;
timer.finish();
})
.unwrap_or_else(|| {
let mut timer = Timer {
waker: waker.clone(),
at,
};
loop {
match self.queue.push(timer) {
Ok(()) => break,
Err(e) => timer = e,
}
self.queue.pop().unwrap().waker.wake();
}
});
// Don't wait for the alarm callback to trigger and directly
// dispatch all timers that are already due
//
// Then update the alarm if necessary
self.dispatch(alarm_schedule);
}
fn dispatch(&mut self, alarm_schedule: &AtomicU64) {
let now = Instant::now();
while self.queue.peek().filter(|timer| timer.at <= now).is_some() {
self.queue.pop().unwrap().waker.wake();
}
self.update_alarm(alarm_schedule);
}
fn update_alarm(&mut self, alarm_schedule: &AtomicU64) {
if let Some(timer) = self.queue.peek() {
let new_at = timer.at;
if self.alarm_at != new_at {
self.alarm_at = new_at;
alarm_schedule.store(new_at.as_ticks(), AtomicOrdering::SeqCst);
}
} else {
self.alarm_at = Instant::MAX;
alarm_schedule.store(Instant::MAX.as_ticks(), AtomicOrdering::SeqCst);
}
}
fn handle_alarm(&mut self, alarm_schedule: &AtomicU64) {
self.alarm_at = Instant::MAX;
self.dispatch(alarm_schedule);
}
}
struct Queue {
inner: Mutex<CriticalSectionRawMutex, RefCell<InnerQueue>>,
alarm_schedule: AtomicU64,
}
impl Queue {
const fn new() -> Self {
Self {
inner: Mutex::new(RefCell::new(InnerQueue::new())),
alarm_schedule: AtomicU64::new(u64::MAX),
}
}
fn schedule_wake(&'static self, at: Instant, waker: &Waker) {
self.inner.lock(|inner| {
let mut inner = inner.borrow_mut();
if inner.alarm.is_none() {
let handle = unsafe { allocate_alarm() }.unwrap();
inner.alarm = Some(handle);
set_alarm_callback(handle, Self::handle_alarm_callback, self as *const _ as _);
}
inner.schedule_wake(at, waker, &self.alarm_schedule)
});
self.update_alarm();
}
fn update_alarm(&self) {
// Need to set the alarm when we are *not* holding the mutex on the inner queue
// because mutexes are not re-entrant, which is a problem because `set_alarm` might immediately
// call us back if the timestamp is in the past.
let alarm_at = self.alarm_schedule.swap(u64::MAX, AtomicOrdering::SeqCst);
if alarm_at < u64::MAX {
set_alarm(self.inner.lock(|inner| inner.borrow().alarm.unwrap()), alarm_at);
}
}
fn handle_alarm(&self) {
self.inner
.lock(|inner| inner.borrow_mut().handle_alarm(&self.alarm_schedule));
self.update_alarm();
}
fn handle_alarm_callback(ctx: *mut ()) {
unsafe { (ctx as *const Self).as_ref().unwrap() }.handle_alarm();
}
}
impl TimerQueue for Queue {
fn schedule_wake(&'static self, at: Instant, waker: &Waker) {
Queue::schedule_wake(self, at, waker);
}
}
crate::timer_queue_impl!(static QUEUE: Queue = Queue::new());
#[cfg(test)]
mod tests {
use core::cell::Cell;
use core::sync::atomic::Ordering;
use core::task::{RawWaker, RawWakerVTable, Waker};
use std::rc::Rc;
use std::sync::Mutex;
use serial_test::serial;
use super::InnerQueue;
use crate::driver::{AlarmHandle, Driver};
use crate::queue_generic::QUEUE;
use crate::Instant;
struct InnerTestDriver {
now: u64,
alarm: u64,
callback: fn(*mut ()),
ctx: *mut (),
}
impl InnerTestDriver {
const fn new() -> Self {
Self {
now: 0,
alarm: u64::MAX,
callback: Self::noop,
ctx: core::ptr::null_mut(),
}
}
fn noop(_ctx: *mut ()) {}
}
unsafe impl Send for InnerTestDriver {}
struct TestDriver(Mutex<InnerTestDriver>);
impl TestDriver {
const fn new() -> Self {
Self(Mutex::new(InnerTestDriver::new()))
}
fn reset(&self) {
*self.0.lock().unwrap() = InnerTestDriver::new();
}
fn set_now(&self, now: u64) {
let notify = {
let mut inner = self.0.lock().unwrap();
if inner.now < now {
inner.now = now;
if inner.alarm <= now {
inner.alarm = u64::MAX;
Some((inner.callback, inner.ctx))
} else {
None
}
} else {
panic!("Going back in time?");
}
};
if let Some((callback, ctx)) = notify {
(callback)(ctx);
}
}
}
impl Driver for TestDriver {
fn now(&self) -> u64 {
self.0.lock().unwrap().now
}
unsafe fn allocate_alarm(&self) -> Option<AlarmHandle> {
Some(AlarmHandle::new(0))
}
fn set_alarm_callback(&self, _alarm: AlarmHandle, callback: fn(*mut ()), ctx: *mut ()) {
let mut inner = self.0.lock().unwrap();
inner.callback = callback;
inner.ctx = ctx;
}
fn set_alarm(&self, _alarm: AlarmHandle, timestamp: u64) {
let notify = {
let mut inner = self.0.lock().unwrap();
if timestamp <= inner.now {
Some((inner.callback, inner.ctx))
} else {
inner.alarm = timestamp;
None
}
};
if let Some((callback, ctx)) = notify {
(callback)(ctx);
}
}
}
struct TestWaker {
pub awoken: Rc<Cell<bool>>,
pub waker: Waker,
}
impl TestWaker {
fn new() -> Self {
let flag = Rc::new(Cell::new(false));
const VTABLE: RawWakerVTable = RawWakerVTable::new(
|data: *const ()| {
unsafe {
Rc::increment_strong_count(data as *const Cell<bool>);
}
RawWaker::new(data as _, &VTABLE)
},
|data: *const ()| unsafe {
let data = data as *const Cell<bool>;
data.as_ref().unwrap().set(true);
Rc::decrement_strong_count(data);
},
|data: *const ()| unsafe {
(data as *const Cell<bool>).as_ref().unwrap().set(true);
},
|data: *const ()| unsafe {
Rc::decrement_strong_count(data);
},
);
let raw = RawWaker::new(Rc::into_raw(flag.clone()) as _, &VTABLE);
Self {
awoken: flag.clone(),
waker: unsafe { Waker::from_raw(raw) },
}
}
}
crate::time_driver_impl!(static DRIVER: TestDriver = TestDriver::new());
fn setup() {
DRIVER.reset();
QUEUE.alarm_schedule.store(u64::MAX, Ordering::SeqCst);
QUEUE.inner.lock(|inner| {
*inner.borrow_mut() = InnerQueue::new();
});
}
fn queue_len() -> usize {
QUEUE.inner.lock(|inner| inner.borrow().queue.iter().count())
}
#[test]
#[serial]
fn test_schedule() {
setup();
assert_eq!(queue_len(), 0);
let waker = TestWaker::new();
QUEUE.schedule_wake(Instant::from_secs(1), &waker.waker);
assert!(!waker.awoken.get());
assert_eq!(queue_len(), 1);
}
#[test]
#[serial]
fn test_schedule_same() {
setup();
let waker = TestWaker::new();
QUEUE.schedule_wake(Instant::from_secs(1), &waker.waker);
assert_eq!(queue_len(), 1);
QUEUE.schedule_wake(Instant::from_secs(1), &waker.waker);
assert_eq!(queue_len(), 1);
QUEUE.schedule_wake(Instant::from_secs(100), &waker.waker);
assert_eq!(queue_len(), 1);
let waker2 = TestWaker::new();
QUEUE.schedule_wake(Instant::from_secs(100), &waker2.waker);
assert_eq!(queue_len(), 2);
}
#[test]
#[serial]
fn test_trigger() {
setup();
let waker = TestWaker::new();
QUEUE.schedule_wake(Instant::from_secs(100), &waker.waker);
assert!(!waker.awoken.get());
DRIVER.set_now(Instant::from_secs(99).as_ticks());
assert!(!waker.awoken.get());
assert_eq!(queue_len(), 1);
DRIVER.set_now(Instant::from_secs(100).as_ticks());
assert!(waker.awoken.get());
assert_eq!(queue_len(), 0);
}
#[test]
#[serial]
fn test_immediate_trigger() {
setup();
let waker = TestWaker::new();
QUEUE.schedule_wake(Instant::from_secs(100), &waker.waker);
DRIVER.set_now(Instant::from_secs(50).as_ticks());
let waker2 = TestWaker::new();
QUEUE.schedule_wake(Instant::from_secs(40), &waker2.waker);
assert!(!waker.awoken.get());
assert!(waker2.awoken.get());
assert_eq!(queue_len(), 1);
}
#[test]
#[serial]
fn test_queue_overflow() {
setup();
for i in 1..super::QUEUE_SIZE {
let waker = TestWaker::new();
QUEUE.schedule_wake(Instant::from_secs(310), &waker.waker);
assert_eq!(queue_len(), i);
assert!(!waker.awoken.get());
}
let first_waker = TestWaker::new();
QUEUE.schedule_wake(Instant::from_secs(300), &first_waker.waker);
assert_eq!(queue_len(), super::QUEUE_SIZE);
assert!(!first_waker.awoken.get());
let second_waker = TestWaker::new();
QUEUE.schedule_wake(Instant::from_secs(305), &second_waker.waker);
assert_eq!(queue_len(), super::QUEUE_SIZE);
assert!(first_waker.awoken.get());
QUEUE.schedule_wake(Instant::from_secs(320), &TestWaker::new().waker);
assert_eq!(queue_len(), super::QUEUE_SIZE);
assert!(second_waker.awoken.get());
}
}