embassy/embassy-stm32/src/sdmmc_v2.rs

1147 lines
34 KiB
Rust
Raw Normal View History

2021-05-02 00:19:14 +00:00
use core::marker::PhantomData;
use core::task::{Context, Poll};
use embassy::util::{AtomicWaker, OnDrop, Unborrow};
use embassy_extras::unborrow;
use futures::future::poll_fn;
use sdio_host::{BusWidth, CardCapacity, CardStatus, CurrentState, SDStatus, CID, CSD, OCR, SCR};
use crate::fmt::*;
use crate::gpio::AnyPin;
use crate::interrupt;
use crate::pac;
use crate::pac::gpio::Gpio;
use crate::pac::interrupt::{Interrupt, InterruptEnum};
use crate::pac::sdmmc::Sdmmc as RegBlock;
use crate::time::Hertz;
/// The signalling scheme used on the SDMMC bus
#[non_exhaustive]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Signalling {
SDR12,
SDR25,
SDR50,
SDR104,
DDR50,
}
impl Default for Signalling {
fn default() -> Self {
Signalling::SDR12
}
}
/// Errors
#[non_exhaustive]
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
Timeout,
SoftwareTimeout,
UnsupportedCardVersion,
UnsupportedCardType,
Crc,
DataCrcFail,
RxOverFlow,
NoCard,
BadClock,
SignalingSwitchFailed,
PeripheralBusy,
}
/// A SD command
struct Cmd {
cmd: u8,
arg: u32,
resp: Response,
}
#[derive(Clone, Copy, Debug, Default)]
/// SD Card
pub struct Card {
/// The type of this card
pub card_type: CardCapacity,
/// Operation Conditions Register
pub ocr: OCR,
/// Relative Card Address
pub rca: u32,
/// Card ID
pub cid: CID,
/// Card Specific Data
pub csd: CSD,
/// SD CARD Configuration Register
pub scr: SCR,
/// SD Status
pub status: SDStatus,
}
impl Card {
/// Size in bytes
pub fn size(&self) -> u64 {
// SDHC / SDXC / SDUC
u64::from(self.csd.block_count()) * 512
}
}
/// Indicates transfer direction
enum Dir {
CardToHost,
HostToCard,
}
#[repr(u8)]
enum PowerCtrl {
Off = 0b00,
On = 0b11,
}
#[repr(u32)]
#[allow(dead_code)]
#[allow(non_camel_case_types)]
enum CmdAppOper {
VOLTAGE_WINDOW_SD = 0x8010_0000,
HIGH_CAPACITY = 0x4000_0000,
SDMMC_STD_CAPACITY = 0x0000_0000,
SDMMC_CHECK_PATTERN = 0x0000_01AA,
SD_SWITCH_1_8V_CAPACITY = 0x0100_0000,
}
#[derive(Eq, PartialEq, Copy, Clone)]
enum Response {
None = 0,
Short = 1,
Long = 3,
}
/// Calculate clock divisor. Returns a SDMMC_CK less than or equal to
/// `sdmmc_ck` in Hertz.
///
/// Returns `(clk_div, clk_f)`, where `clk_div` is the divisor register
/// value and `clk_f` is the resulting new clock frequency.
fn clk_div(ker_ck: Hertz, sdmmc_ck: u32) -> Result<(u16, Hertz), Error> {
match (ker_ck.0 + sdmmc_ck - 1) / sdmmc_ck {
0 | 1 => Ok((0, ker_ck)),
x @ 2..=2046 => {
let clk_div = ((x + 1) / 2) as u16;
let clk = Hertz(ker_ck.0 / (clk_div as u32 * 2));
Ok((clk_div, clk))
}
_ => Err(Error::BadClock),
}
}
struct SdmmcPins {
clk: AnyPin,
cmd: AnyPin,
d0: AnyPin,
d1: Option<AnyPin>,
d2: Option<AnyPin>,
d3: Option<AnyPin>,
}
impl SdmmcPins {
/// # Safety
///
/// Must have exclusive access to the gpio(s)' registers
unsafe fn deconfigure(&mut self) {
use crate::gpio::sealed::Pin as _;
use crate::gpio::Pin;
use pac::gpio::vals::Moder;
let n = self.clk.pin().into();
self.clk
.block()
.moder()
.modify(|w| w.set_moder(n, Moder::ANALOG));
let n = self.cmd.pin().into();
self.cmd
.block()
.moder()
.modify(|w| w.set_moder(n, Moder::ANALOG));
let n = self.d0.pin().into();
self.d0
.block()
.moder()
.modify(|w| w.set_moder(n, Moder::ANALOG));
if let Some(pin) = &self.d1 {
let n = pin.pin().into();
pin.block()
.moder()
.modify(|w| w.set_moder(n, Moder::ANALOG));
}
if let Some(pin) = &self.d2 {
let n = pin.pin().into();
pin.block()
.moder()
.modify(|w| w.set_moder(n, Moder::ANALOG));
}
if let Some(pin) = &self.d3 {
let n = pin.pin().into();
pin.block()
.moder()
.modify(|w| w.set_moder(n, Moder::ANALOG));
}
}
}
#[repr(transparent)]
pub struct DataBlock {
pub buf: [u32; 128],
}
/// Sdmmc device
pub struct Sdmmc<'d> {
sdmmc: PhantomData<&'d mut ()>,
regs_addr: u32,
/// SDMMC kernel clock
ker_ck: Hertz,
/// AHB clock
hclk: Hertz,
/// Data bus width
bus_width: BusWidth,
/// Current clock to card
clock: Hertz,
/// Current signalling scheme to card
signalling: Signalling,
/// Card
card: Option<Card>,
pins: SdmmcPins,
interrupt_sdmmc1: bool,
}
impl<'d> Sdmmc<'d> {
#[inline(always)]
fn regs(&mut self) -> RegBlock {
RegBlock(self.regs_addr as _)
}
/// # Safety
///
/// Access to `block` registers should be exclusive
unsafe fn configure_pin(block: Gpio, n: usize, afr_num: u8, pup: bool) {
use pac::gpio::vals::{Afr, Moder, Ospeedr, Pupdr};
let (afr, n_af) = if n < 8 { (0, n) } else { (1, n - 8) };
block.afr(afr).modify(|w| w.set_afr(n_af, Afr(afr_num)));
block.moder().modify(|w| w.set_moder(n, Moder::ALTERNATE));
if pup {
block.pupdr().modify(|w| w.set_pupdr(n, Pupdr::PULLUP));
}
block
.ospeedr()
.modify(|w| w.set_ospeedr(n, Ospeedr::VERYHIGHSPEED));
}
/// # Safety
///
/// Access to `regs` registers should be exclusive
unsafe fn new_inner(regs: RegBlock, kernel_clk: Hertz) -> Hertz {
// While the SD/SDIO card or eMMC is in identification mode,
// the SDMMC_CK frequency must be less than 400 kHz.
let (clkdiv, clock) = unwrap!(clk_div(kernel_clk, 400_000));
regs.clkcr().write(|w| {
w.set_widbus(0);
w.set_clkdiv(clkdiv);
w.set_pwrsav(false);
w.set_negedge(false);
w.set_hwfc_en(true);
});
// Power off, writen 00: Clock to the card is stopped;
// D[7:0], CMD, and CK are driven high.
regs.power().modify(|w| w.set_pwrctrl(PowerCtrl::Off as u8));
clock
}
/// # Safety
///
/// Futures that borrow this type can't be leaked
#[allow(clippy::too_many_arguments)]
pub unsafe fn new_four_width<T, CLK, CMD, D0, D1, D2, D3>(
_peripheral: impl Unborrow<Target = T> + 'd,
interrupt: u16,
clk_pin: impl Unborrow<Target = CLK> + 'd,
cmd_pin: impl Unborrow<Target = CMD> + 'd,
d0_pin: impl Unborrow<Target = D0> + 'd,
d1_pin: impl Unborrow<Target = D1> + 'd,
d2_pin: impl Unborrow<Target = D2> + 'd,
d3_pin: impl Unborrow<Target = D3> + 'd,
hclk: Hertz,
kernel_clk: Hertz,
) -> Self
where
T: Instance,
CLK: CkPin<T>,
CMD: CmdPin<T>,
D0: D0Pin<T>,
D1: D1Pin<T>,
D2: D2Pin<T>,
D3: D3Pin<T>,
{
unborrow!(clk_pin, cmd_pin, d0_pin, d1_pin, d2_pin, d3_pin);
// Configure Pins
cortex_m::interrupt::free(|_| {
// clk
let block = clk_pin.block();
let n = clk_pin.pin() as usize;
let afr_num = CLK::AF_NUM;
Self::configure_pin(block, n, afr_num, false);
// cmd
let block = cmd_pin.block();
let n = cmd_pin.pin() as usize;
let afr_num = CMD::AF_NUM;
Self::configure_pin(block, n, afr_num, true);
// d0
let block = d0_pin.block();
let n = d0_pin.pin() as usize;
let afr_num = D0::AF_NUM;
Self::configure_pin(block, n, afr_num, true);
// d1
let block = d1_pin.block();
let n = d1_pin.pin() as usize;
let afr_num = D1::AF_NUM;
Self::configure_pin(block, n, afr_num, true);
// d2
let block = d2_pin.block();
let n = d2_pin.pin() as usize;
let afr_num = D2::AF_NUM;
Self::configure_pin(block, n, afr_num, true);
// d3
let block = d3_pin.block();
let n = d3_pin.pin() as usize;
let afr_num = D3::AF_NUM;
Self::configure_pin(block, n, afr_num, true);
});
let regs = RegBlock(T::ADDR as _);
let clock = Self::new_inner(regs, kernel_clk);
let pins = SdmmcPins {
cmd: cmd_pin.degrade(),
clk: clk_pin.degrade(),
d0: d0_pin.degrade(),
d1: Some(d1_pin.degrade()),
d2: Some(d2_pin.degrade()),
d3: Some(d3_pin.degrade()),
};
Self {
sdmmc: PhantomData,
regs_addr: T::ADDR,
bus_width: BusWidth::Four,
ker_ck: kernel_clk,
hclk,
clock,
signalling: Default::default(),
card: None,
pins,
interrupt_sdmmc1: interrupt == SDMMC1_INR,
}
}
/// Initializes card (if present) and sets the bus at the
/// specified frequency.
pub async fn init_card(&mut self, freq: impl Into<Hertz>) -> Result<(), Error> {
let freq = freq.into();
let regs = self.regs();
// NOTE(unsafe) We have exclusive access to the peripheral
unsafe {
regs.power().modify(|w| w.set_pwrctrl(PowerCtrl::On as u8));
self.cmd(Cmd::idle(), false)?;
// Check if cards supports CMD8 (with pattern)
self.cmd(Cmd::hs_send_ext_csd(0x1AA), false)?;
let r1 = regs.respr(0).read().cardstatus1();
let mut card = if r1 == 0x1AA {
// Card echoed back the pattern. Must be at least v2
Card::default()
} else {
return Err(Error::UnsupportedCardVersion);
};
let ocr = loop {
// Signal that next command is a app command
self.cmd(Cmd::app_cmd(0), false)?; // CMD55
let arg = CmdAppOper::VOLTAGE_WINDOW_SD as u32
| CmdAppOper::HIGH_CAPACITY as u32
| CmdAppOper::SD_SWITCH_1_8V_CAPACITY as u32;
// Initialize card
match self.cmd(Cmd::app_op_cmd(arg), false) {
// ACMD41
Ok(_) => (),
Err(Error::Crc) => (),
Err(err) => return Err(err),
}
let ocr: OCR = regs.respr(0).read().cardstatus1().into();
if !ocr.is_busy() {
// Power up done
break ocr;
}
};
if ocr.high_capacity() {
// Card is SDHC or SDXC or SDUC
card.card_type = CardCapacity::SDHC;
} else {
card.card_type = CardCapacity::SDSC;
}
card.ocr = ocr;
self.cmd(Cmd::all_send_cid(), false)?; // CMD2
let cid0 = regs.respr(0).read().cardstatus1() as u128;
let cid1 = regs.respr(1).read().cardstatus1() as u128;
let cid2 = regs.respr(2).read().cardstatus1() as u128;
let cid3 = regs.respr(3).read().cardstatus1() as u128;
let cid = (cid0 << 96) | (cid1 << 64) | (cid2 << 32) | (cid3);
card.cid = cid.into();
self.cmd(Cmd::send_rel_addr(), false)?;
card.rca = regs.respr(0).read().cardstatus1() >> 16;
self.cmd(Cmd::send_csd(card.rca << 16), false)?;
let csd0 = regs.respr(0).read().cardstatus1() as u128;
let csd1 = regs.respr(1).read().cardstatus1() as u128;
let csd2 = regs.respr(2).read().cardstatus1() as u128;
let csd3 = regs.respr(3).read().cardstatus1() as u128;
let csd = (csd0 << 96) | (csd1 << 64) | (csd2 << 32) | (csd3);
card.csd = csd.into();
self.select_card(Some(&card))?;
self.get_scr(&mut card).await?;
// Set bus width
let (width, acmd_arg) = match self.bus_width {
BusWidth::Eight => unimplemented!(),
BusWidth::Four if card.scr.bus_width_four() => (BusWidth::Four, 2),
_ => (BusWidth::One, 0),
};
self.cmd(Cmd::app_cmd(card.rca << 16), false)?;
self.cmd(Cmd::cmd6(acmd_arg), false)?;
// CPSMACT and DPSMACT must be 0 to set WIDBUS
self.wait_idle();
regs.clkcr().modify(|w| {
w.set_widbus(match width {
BusWidth::One => 0,
BusWidth::Four => 1,
BusWidth::Eight => 2,
_ => self::panic!("Invalid Bus Width"),
})
});
// Set Clock
if freq.0 <= 25_000_000 {
// Final clock frequency
self.clkcr_set_clkdiv(freq.0, width)?;
} else {
// Switch to max clock for SDR12
self.clkcr_set_clkdiv(25_000_000, width)?;
}
// Read status
self.card.replace(card);
self.read_sd_status().await?;
if freq.0 > 25_000_000 {
// Switch to SDR25
2021-05-09 05:19:00 +00:00
self.signalling = self.switch_signalling_mode(Signalling::SDR25).await?;
2021-05-02 00:19:14 +00:00
if self.signalling == Signalling::SDR25 {
// Set final clock frequency
self.clkcr_set_clkdiv(freq.0, width)?;
if self.read_status()?.state() != CurrentState::Transfer {
return Err(Error::SignalingSwitchFailed);
}
}
}
// Read status after signalling change
self.read_sd_status().await?;
}
Ok(())
}
/// Get a reference to the initialized card
///
/// # Errors
///
/// Returns Error::NoCard if [`init_card`](#method.init_card)
/// has not previously succeeded
pub fn card(&self) -> Result<&Card, Error> {
self.card.as_ref().ok_or(Error::NoCard)
}
/// Get a mutable reference to the initialized card
///
/// # Errors
///
/// Returns Error::NoCard if [`init_card`](#method.init_card)
/// has not previously succeeded
pub fn card_mut(&mut self) -> Result<&mut Card, Error> {
self.card.as_mut().ok_or(Error::NoCard)
}
pub async fn read_block(
&mut self,
block_idx: u32,
buffer: &mut DataBlock,
) -> Result<(), Error> {
self::todo!()
}
/// Get the current SDMMC bus clock
pub fn clock(&self) -> Hertz {
self.clock
}
/// Wait idle on DOSNACT and CPSMACT
#[inline(always)]
fn wait_idle(&mut self) {
let regs = self.regs();
// NOTE(unsafe) Atomic read with no side-effects
unsafe {
while {
let status = regs.star().read();
status.dpsmact() || status.cpsmact()
} {}
}
}
/// # Safety
///
/// `buffer_addr` must be valid for the whole transfer and word aligned
unsafe fn prepare_datapath_transfer(
&mut self,
buffer_addr: u32,
length_bytes: u32,
block_size: u8,
direction: Dir,
) {
self::assert!(block_size <= 14, "Block size up to 2^14 bytes");
let regs = self.regs();
let dtdir = match direction {
Dir::CardToHost => true,
Dir::HostToCard => false,
};
// Command AND Data state machines must be idle
self.wait_idle();
Self::clear_interrupt_flags(regs);
// NOTE(unsafe) We have exclusive access to the regisers
// TODO: Make this configurable
regs.dtimer().write(|w| w.set_datatime(5_000_000));
regs.dlenr().write(|w| w.set_datalength(length_bytes));
regs.idmabase0r().write(|w| w.set_idmabase0(buffer_addr));
regs.idmactrlr().modify(|w| w.set_idmaen(true));
regs.dctrl().modify(|w| {
w.set_dblocksize(block_size);
w.set_dtdir(dtdir);
});
}
/// Sets the CLKDIV field in CLKCR. Updates clock field in self
fn clkcr_set_clkdiv(&mut self, freq: u32, width: BusWidth) -> Result<(), Error> {
let regs = self.regs();
let (clkdiv, new_clock) = clk_div(self.ker_ck, freq)?;
// Enforce AHB and SDMMC_CK clock relation. See RM0433 Rev 7
// Section 55.5.8
let sdmmc_bus_bandwidth = new_clock.0 * (width as u32);
self::assert!(self.hclk.0 > 3 * sdmmc_bus_bandwidth / 32);
self.clock = new_clock;
// NOTE(unsafe) We have exclusive access to the regblock
unsafe {
// CPSMACT and DPSMACT must be 0 to set CLKDIV
self.wait_idle();
regs.clkcr().modify(|w| w.set_clkdiv(clkdiv));
}
Ok(())
}
/// Switch mode using CMD6.
///
/// Attempt to set a new signalling mode. The selected
/// signalling mode is returned. Expects the current clock
/// frequency to be > 12.5MHz.
2021-05-09 05:19:00 +00:00
async fn switch_signalling_mode(
&mut self,
signalling: Signalling,
) -> Result<Signalling, Error> {
// NB PLSS v7_10 4.3.10.4: "the use of SET_BLK_LEN command is not
// necessary"
let set_function = 0x8000_0000
| match signalling {
// See PLSS v7_10 Table 4-11
Signalling::DDR50 => 0xFF_FF04,
Signalling::SDR104 => 0xFF_1F03,
Signalling::SDR50 => 0xFF_1F02,
Signalling::SDR25 => 0xFF_FF01,
Signalling::SDR12 => 0xFF_FF00,
};
let mut status = [0u32; 16];
let status_addr = &mut status as *mut [u32; 16] as u32;
// Arm `OnDrop` after the buffer, so it will be dropped first
let regs = self.regs();
let on_drop = OnDrop::new(move || unsafe { Self::on_drop(regs) });
unsafe {
self.prepare_datapath_transfer(status_addr, 64, 6, Dir::CardToHost);
Self::data_interrupts(regs, true);
}
self.cmd(Cmd::cmd6(set_function), true)?; // CMD6
let res = poll_fn(|cx| {
self.store_waker_and_unmask(&cx);
let status = unsafe { regs.star().read() };
if status.dcrcfail() {
return Poll::Ready(Err(Error::Crc));
} else if status.dtimeout() {
return Poll::Ready(Err(Error::Timeout));
} else if status.dataend() {
return Poll::Ready(Ok(()));
}
Poll::Pending
})
.await;
unsafe {
Self::data_interrupts(regs, false);
}
Self::clear_interrupt_flags(regs);
// Host is allowed to use the new functions at least 8
// clocks after the end of the switch command
// transaction. We know the current clock period is < 80ns,
// so a total delay of 640ns is required here
for _ in 0..300 {
cortex_m::asm::nop();
}
match res {
Ok(_) => {
on_drop.defuse();
unsafe {
regs.idmactrlr().modify(|w| w.set_idmaen(false));
}
// Function Selection of Function Group 1
let selection = (u32::from_be(status[4]) >> 24) & 0xF;
match selection {
0 => Ok(Signalling::SDR12),
1 => Ok(Signalling::SDR25),
2 => Ok(Signalling::SDR50),
3 => Ok(Signalling::SDR104),
4 => Ok(Signalling::DDR50),
_ => Err(Error::UnsupportedCardType),
}
}
Err(e) => Err(e),
}
2021-05-02 00:19:14 +00:00
}
/// Query the card status (CMD13, returns R1)
///
fn read_status(&mut self) -> Result<CardStatus, Error> {
let regs = self.regs();
let rca = self.card()?.rca;
self.cmd(Cmd::card_status(rca << 16), false)?; // CMD13
// NOTE(unsafe) Atomic read with no side-effects
let r1 = unsafe { regs.respr(0).read().cardstatus1() };
Ok(r1.into())
}
/// Reads the SD Status (ACMD13)
async fn read_sd_status(&mut self) -> Result<(), Error> {
let card = self.card()?;
let rca = card.rca;
self.cmd(Cmd::set_block_length(64), false)?; // CMD16
self.cmd(Cmd::app_cmd(rca << 16), false)?; // APP
let mut status = [0u32; 16];
let status_addr = &mut status as *mut [u32; 16] as u32;
// Arm `OnDrop` after the buffer, so it will be dropped first
let regs = self.regs();
let on_drop = OnDrop::new(move || unsafe { Self::on_drop(regs) });
unsafe {
self.prepare_datapath_transfer(status_addr, 64, 6, Dir::CardToHost);
Self::data_interrupts(regs, true);
}
self.cmd(Cmd::card_status(0), true)?;
let res = poll_fn(|cx| {
self.store_waker_and_unmask(&cx);
let status = unsafe { regs.star().read() };
if status.dcrcfail() {
return Poll::Ready(Err(Error::Crc));
} else if status.dtimeout() {
return Poll::Ready(Err(Error::Timeout));
} else if status.dataend() {
return Poll::Ready(Ok(()));
}
Poll::Pending
})
.await;
unsafe {
Self::data_interrupts(regs, false);
}
Self::clear_interrupt_flags(regs);
if let Ok(_) = &res {
on_drop.defuse();
unsafe {
regs.idmactrlr().modify(|w| w.set_idmaen(false));
}
for byte in status.iter_mut() {
*byte = u32::from_be(*byte);
}
self.card_mut()?.status = status.into();
}
res
}
/// Select one card and place it into the _Tranfer State_
///
/// If `None` is specifed for `card`, all cards are put back into
/// _Stand-by State_
fn select_card(&mut self, card: Option<&Card>) -> Result<(), Error> {
// Determine Relative Card Address (RCA) of given card
let rca = card.map(|c| c.rca << 16).unwrap_or(0);
let r = self.cmd(Cmd::sel_desel_card(rca), false);
match (r, rca) {
(Err(Error::Timeout), 0) => Ok(()),
_ => r,
}
}
/// Clear flags in interrupt clear register
#[inline(always)]
fn clear_interrupt_flags(regs: RegBlock) {
// NOTE(unsafe) Atomic write
unsafe {
regs.icr().write(|w| {
w.set_ccrcfailc(true);
w.set_dcrcfailc(true);
w.set_ctimeoutc(true);
w.set_dtimeoutc(true);
w.set_txunderrc(true);
w.set_rxoverrc(true);
2021-05-09 05:19:00 +00:00
w.set_cmdrendc(true);
2021-05-02 00:19:14 +00:00
w.set_cmdsentc(true);
w.set_dataendc(true);
w.set_dholdc(true);
w.set_dbckendc(true);
w.set_dabortc(true);
w.set_busyd0endc(true);
w.set_sdioitc(true);
w.set_ackfailc(true);
w.set_acktimeoutc(true);
w.set_vswendc(true);
w.set_ckstopc(true);
w.set_idmatec(true);
w.set_idmabtcc(true);
});
}
}
/// Enables the interrupts for data transfer
///
/// # Safety
///
/// Access to `regs` must be exclusive
#[inline(always)]
unsafe fn data_interrupts(regs: RegBlock, enable: bool) {
regs.maskr().modify(|w| {
w.set_dcrcfailie(enable);
w.set_dtimeoutie(enable);
w.set_dataendie(enable);
w.set_dabortie(enable);
});
}
async fn get_scr(&mut self, card: &mut Card) -> Result<(), Error> {
// Read the the 64-bit SCR register
self.cmd(Cmd::set_block_length(8), false)?; // CMD16
self.cmd(Cmd::app_cmd(card.rca << 16), false)?;
let mut scr = [0u32; 2];
let scr_addr = &mut scr as *mut u32 as u32;
// Arm `OnDrop` after the buffer, so it will be dropped first
let regs = self.regs();
let on_drop = OnDrop::new(move || unsafe { Self::on_drop(regs) });
unsafe {
self.prepare_datapath_transfer(scr_addr, 8, 3, Dir::CardToHost);
Self::data_interrupts(regs, true);
}
self.cmd(Cmd::cmd51(), true)?;
let res = poll_fn(|cx| {
self.store_waker_and_unmask(&cx);
let status = unsafe { regs.star().read() };
if status.dcrcfail() {
return Poll::Ready(Err(Error::Crc));
} else if status.dtimeout() {
return Poll::Ready(Err(Error::Timeout));
} else if status.dataend() {
return Poll::Ready(Ok(()));
}
Poll::Pending
})
.await;
unsafe {
Self::data_interrupts(regs, false);
}
Self::clear_interrupt_flags(regs);
if let Ok(_) = &res {
on_drop.defuse();
unsafe {
regs.idmactrlr().modify(|w| w.set_idmaen(false));
let scr_bytes = &*(&scr as *const [u32; 2] as *const [u8; 8]);
card.scr = SCR(u64::from_be_bytes(*scr_bytes));
}
}
res
}
/// Send command to card
fn cmd(&mut self, cmd: Cmd, data: bool) -> Result<(), Error> {
let regs = self.regs();
Self::clear_interrupt_flags(regs);
// NOTE(safety) Atomic operations
unsafe {
// CP state machine must be idle
while regs.star().read().cpsmact() {}
// Command arg
regs.argr().write(|w| w.set_cmdarg(cmd.arg));
// Special mode in CP State Machine
// CMD12: Stop Transmission
let cpsm_stop_transmission = cmd.cmd == 12;
// Command index and start CP State Machine
regs.cmdr().write(|w| {
w.set_waitint(false);
w.set_waitresp(cmd.resp as u8);
w.set_cmdstop(cpsm_stop_transmission);
w.set_cmdindex(cmd.cmd);
w.set_cpsmen(true);
w.set_cmdtrans(data);
});
// TODO: Check if this timeout is necessary
let mut timeout: u32 = 0xFFFF_FFFF;
let mut status;
if cmd.resp == Response::None {
// Wait for CMDSENT or a timeout
while {
status = regs.star().read();
!(status.ctimeout() || status.cmdsent()) && timeout > 0
} {
timeout -= 1;
}
} else {
// Wait for CMDREND or CCRCFAIL or a timeout
while {
status = regs.star().read();
!(status.ctimeout() || status.cmdrend() || status.ccrcfail()) && timeout > 0
} {
timeout -= 1;
}
}
if status.ctimeout() {
return Err(Error::Timeout);
} else if timeout == 0 {
return Err(Error::SoftwareTimeout);
} else if status.ccrcfail() {
return Err(Error::Crc);
}
Ok(())
}
}
fn store_waker_and_unmask(&self, cx: &Context) {
use cortex_m::peripheral::NVIC;
// NOTE(unsafe) We own the interrupt and can unmask it, it won't cause unsoundness
unsafe {
if self.interrupt_sdmmc1 {
WAKER_1.register(cx.waker());
NVIC::unmask(InterruptEnum::SDMMC1);
} else {
WAKER_2.register(cx.waker());
NVIC::unmask(InterruptEnum::SDMMC2);
}
}
}
/// # Safety
///
/// Ensure that `regs` has exclusive access to the regblocks
unsafe fn on_drop(regs: RegBlock) {
if regs.star().read().dpsmact() {
// Send abort
// CP state machine must be idle
while regs.star().read().cpsmact() {}
// Command arg
regs.argr().write(|w| w.set_cmdarg(0));
// Command index and start CP State Machine
regs.cmdr().write(|w| {
w.set_waitint(false);
w.set_waitresp(Response::Short as u8);
w.set_cmdstop(true);
w.set_cmdindex(12);
w.set_cpsmen(true);
w.set_cmdtrans(false);
});
// Wait for the abort
while regs.star().read().dpsmact() {}
}
Self::data_interrupts(regs, false);
Self::clear_interrupt_flags(regs);
regs.idmactrlr().modify(|w| w.set_idmaen(false));
}
}
impl<'d> Drop for Sdmmc<'d> {
fn drop(&mut self) {
unsafe {
Self::on_drop(self.regs());
}
// NOTE(unsafe) With `free` we will have exclusive access to the registers
cortex_m::interrupt::free(|_| unsafe {
self.pins.deconfigure();
})
}
}
/// SD card Commands
impl Cmd {
const fn new(cmd: u8, arg: u32, resp: Response) -> Cmd {
Cmd { cmd, arg, resp }
}
/// CMD0: Idle
const fn idle() -> Cmd {
Cmd::new(0, 0, Response::None)
}
/// CMD2: Send CID
const fn all_send_cid() -> Cmd {
Cmd::new(2, 0, Response::Long)
}
/// CMD3: Send Relative Address
const fn send_rel_addr() -> Cmd {
Cmd::new(3, 0, Response::Short)
}
/// CMD6: Switch Function Command
/// ACMD6: Bus Width
const fn cmd6(arg: u32) -> Cmd {
Cmd::new(6, arg, Response::Short)
}
/// CMD7: Select one card and put it into the _Tranfer State_
const fn sel_desel_card(rca: u32) -> Cmd {
Cmd::new(7, rca, Response::Short)
}
/// CMD8:
const fn hs_send_ext_csd(arg: u32) -> Cmd {
Cmd::new(8, arg, Response::Short)
}
/// CMD9:
const fn send_csd(rca: u32) -> Cmd {
Cmd::new(9, rca, Response::Long)
}
/// CMD12:
const fn stop_transmission() -> Cmd {
Cmd::new(12, 0, Response::Short)
}
/// CMD13: Ask card to send status register
/// ACMD13: SD Status
const fn card_status(rca: u32) -> Cmd {
Cmd::new(13, rca, Response::Short)
}
/// CMD16:
const fn set_block_length(blocklen: u32) -> Cmd {
Cmd::new(16, blocklen, Response::Short)
}
/// CMD17: Block Read
const fn read_single_block(addr: u32) -> Cmd {
Cmd::new(17, addr, Response::Short)
}
/// CMD18: Multiple Block Read
const fn read_multiple_blocks(addr: u32) -> Cmd {
Cmd::new(18, addr, Response::Short)
}
/// CMD24: Block Write
const fn write_single_block(addr: u32) -> Cmd {
Cmd::new(24, addr, Response::Short)
}
const fn app_op_cmd(arg: u32) -> Cmd {
Cmd::new(41, arg, Response::Short)
}
const fn cmd51() -> Cmd {
Cmd::new(51, 0, Response::Short)
}
/// App Command. Indicates that next command will be a app command
const fn app_cmd(rca: u32) -> Cmd {
Cmd::new(55, rca, Response::Short)
}
}
//////////////////////////////////////////////////////
const SDMMC1_INR: u16 = 49;
static WAKER_1: AtomicWaker = AtomicWaker::new();
static WAKER_2: AtomicWaker = AtomicWaker::new();
#[interrupt]
unsafe fn SDMMC1() {
cortex_m::peripheral::NVIC::mask(InterruptEnum::SDMMC1);
WAKER_1.wake();
}
#[cfg(feature = "2sdmmc")]
#[interrupt]
unsafe fn SDMMC2() {
cortex_m::peripheral::NVIC::mask(InterruptEnum::SDMMC2);
WAKER_2.wake();
}
pub(crate) mod sealed {
use super::*;
use crate::gpio::Pin as GpioPin;
pub trait Instance {
const ADDR: u32;
type Interrupt: Interrupt;
}
pub trait CkPin<T: Instance>: GpioPin {
const AF_NUM: u8;
}
pub trait CmdPin<T: Instance>: GpioPin {
const AF_NUM: u8;
}
pub trait D0Pin<T: Instance>: GpioPin {
const AF_NUM: u8;
}
pub trait D1Pin<T: Instance>: GpioPin {
const AF_NUM: u8;
}
pub trait D2Pin<T: Instance>: GpioPin {
const AF_NUM: u8;
}
pub trait D3Pin<T: Instance>: GpioPin {
const AF_NUM: u8;
}
pub trait D4Pin<T: Instance>: GpioPin {
const AF_NUM: u8;
}
pub trait D5Pin<T: Instance>: GpioPin {
const AF_NUM: u8;
}
pub trait D6Pin<T: Instance>: GpioPin {
const AF_NUM: u8;
}
pub trait D7Pin<T: Instance>: GpioPin {
const AF_NUM: u8;
}
}
pub trait Instance: sealed::Instance {}
pub trait CkPin<T: Instance>: sealed::CkPin<T> {}
pub trait CmdPin<T: Instance>: sealed::CmdPin<T> {}
pub trait D0Pin<T: Instance>: sealed::D0Pin<T> {}
pub trait D1Pin<T: Instance>: sealed::D1Pin<T> {}
pub trait D2Pin<T: Instance>: sealed::D2Pin<T> {}
pub trait D3Pin<T: Instance>: sealed::D3Pin<T> {}
pub trait D4Pin<T: Instance>: sealed::D4Pin<T> {}
pub trait D5Pin<T: Instance>: sealed::D5Pin<T> {}
pub trait D6Pin<T: Instance>: sealed::D6Pin<T> {}
pub trait D7Pin<T: Instance>: sealed::D7Pin<T> {}
macro_rules! impl_sdmmc {
($inst:ident, $addr:expr) => {
impl crate::sdmmc_v2::sealed::Instance for peripherals::$inst {
const ADDR: u32 = $addr;
type Interrupt = interrupt::$inst;
}
impl crate::sdmmc_v2::Instance for peripherals::$inst {}
};
}
macro_rules! impl_sdmmc_pin {
($inst:ident, $func:ident, $pin:ident, $num:expr) => {
impl crate::sdmmc_v2::sealed::$func<peripherals::$inst> for peripherals::$pin {
const AF_NUM: u8 = $num;
}
impl crate::sdmmc_v2::$func<peripherals::$inst> for peripherals::$pin {}
};
}